Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 8(2): 475-483, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28270961

ABSTRACT

Corneal topography allows the assessment of the cornea's refractive power which is crucial for diagnostics and surgical planning. The use of optical coherence tomography (OCT) for corneal topography is still limited. One limitation is the susceptibility to disturbances like blinking of the eye. This can result in partially corrupted scans that cannot be evaluated using common methods. We present a new scanning method for reliable corneal topography from partial scans. Based on the golden angle, the method features a balanced scan point distribution which refines over measurement time and remains balanced when part of the scan is removed. The performance of the method is assessed numerically and by measurements of test surfaces. The results confirm that the method enables numerically well-conditioned and reliable corneal topography from partially corrupted scans and reduces the need for repeated measurements in case of abrupt disturbances.

3.
Europace ; 16(10): 1534-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24916431

ABSTRACT

AIMS: Today's cardiac pacemakers are powered by batteries with limited energy capacity. As the battery's lifetime ends, the pacemaker needs to be replaced. This surgical re-intervention is costly and bears the risk of complications. Thus, a pacemaker without primary batteries is desirable. The goal of this study was to test whether transcutaneous solar light could power a pacemaker. METHODS AND RESULTS: We used a three-step approach to investigate the feasibility of sunlight-powered cardiac pacing. First, the harvestable power was estimated. Theoretically, a subcutaneously implanted 1 cm(2) solar module may harvest ∼2500 µW from sunlight (3 mm implantation depth). Secondly, ex vivo measurements were performed with solar cells placed under pig skin flaps exposed to a solar simulator and real sunlight. Ex vivo measurements under real sunlight resulted in a median output power of 4941 µW/cm(2) [interquartile range (IQR) 3767-5598 µW/cm(2), median skin flap thickness 3.0 mm (IQR 2.7-3.3 mm)]. The output power strongly depended on implantation depth (ρSpearman = -0.86, P < 0.001). Finally, a batteryless single-chamber pacemaker powered by a 3.24 cm(2) solar module was implanted in vivo in a pig to measure output power and to pace. In vivo measurements showed a median output power of >3500 µW/cm(2) (skin flap thickness 2.8-3.84 mm). Successful batteryless VVI pacing using a subcutaneously implanted solar module was performed. CONCLUSION: Based on our results, we estimate that a few minutes of direct sunlight (irradiating an implanted solar module) allow powering a pacemaker for 24 h using a suitable energy storage. Thus, powering a pacemaker by sunlight is feasible and may be an alternative energy supply for tomorrow's pacemakers.


Subject(s)
Electric Power Supplies , Pacemaker, Artificial , Sunlight , Animals , Equipment Design , Feasibility Studies , Materials Testing , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...