Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 38(5): 951-962, 2024 May.
Article in English | MEDLINE | ID: mdl-38553571

ABSTRACT

Relapse in T-cell acute lymphoblastic leukemia (T-ALL) may signify the persistence of leukemia-initiating cells (L-ICs). Ectopic TAL1/LMO expression defines the largest subset of T-ALL, but its role in leukemic transformation and its impact on relapse-driving L-ICs remain poorly understood. In TAL1/LMO mouse models, double negative-3 (DN3; CD4-CD8-CD25+CD44-) thymic progenitors harbored L-ICs. However, only a subset of DN3 leukemic cells exhibited L-IC activity, and studies linking L-ICs and chemotolerance are needed. To investigate L-IC heterogeneity, we used mouse models and applied single-cell RNA-sequencing and nucleosome labeling techniques in vivo. We identified a DN3 subpopulation with a cell cycle-restricted profile and heightened TAL1/LMO2 activity, that expressed genes associated with stemness and quiescence. This dormant DN3 subset progressively expanded throughout leukemogenesis, displaying intrinsic chemotolerance and enrichment in genes linked to minimal residual disease. Examination of TAL/LMO patient samples revealed a similar pattern in CD7+CD1a- thymic progenitors, previously recognized for their L-IC activity, demonstrating cell cycle restriction and chemotolerance. Our findings substantiate the emergence of dormant, chemotolerant L-ICs during leukemogenesis, and demonstrate that Tal1 and Lmo2 cooperate to promote DN3 quiescence during the transformation process. This study provides a deeper understanding of TAL1/LMO-induced T-ALL and its clinical implications in therapy failure.


Subject(s)
Adaptor Proteins, Signal Transducing , LIM Domain Proteins , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , T-Cell Acute Lymphocytic Leukemia Protein 1 , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Cell Acute Lymphocytic Leukemia Protein 1/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics , Thymus Gland/metabolism , Thymus Gland/pathology , Humans , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
2.
Development ; 147(14)2020 07 17.
Article in English | MEDLINE | ID: mdl-32580934

ABSTRACT

Melanoblasts disperse throughout the skin and populate hair follicles through long-range cell migration. During migration, cells undergo cycles of coordinated attachment and detachment from the extracellular matrix (ECM). Embryonic migration processes that require cell-ECM attachment are dependent on the integrin family of adhesion receptors. Precise regulation of integrin-mediated adhesion is important for many developmental migration events. However, the mechanisms that regulate integrin-mediated adhesion in vivo in melanoblasts are not well understood. Here, we show that autoinhibitory regulation of the integrin-associated adapter protein talin coordinates cell-ECM adhesion during melanoblast migration in vivo Specifically, an autoinhibition-defective talin mutant strengthens and stabilizes integrin-based adhesions in melanocytes, which impinges on their ability to migrate. Mice with defective talin autoinhibition exhibit delays in melanoblast migration and pigmentation defects. Our results show that coordinated integrin-mediated cell-ECM attachment is essential for melanoblast migration and that talin autoinhibition is an important mechanism for fine-tuning cell-ECM adhesion during cell migration in development.


Subject(s)
Cell Adhesion , Extracellular Matrix/metabolism , Actins/metabolism , Animals , Cell Movement , Cell Shape , Cells, Cultured , Embryo, Mammalian/metabolism , Integrins/metabolism , Male , Melanocytes/cytology , Melanocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , Mutagenesis, Site-Directed , Pigmentation , Talin/genetics , Talin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...