Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Theor Appl Genet ; 137(7): 156, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858297

ABSTRACT

KEY MESSAGE: Phenomic prediction implemented on a large diversity set can efficiently predict seed germination, capture low-effect favorable alleles that are not revealed by GWAS and identify promising genetic resources. Oilseed rape faces many challenges, especially at the beginning of its developmental cycle. Achieving rapid and uniform seed germination could help to ensure a successful establishment and therefore enabling the crop to compete with weeds and tolerate stresses during the earliest developmental stages. The polygenic nature of seed germination was highlighted in several studies, and more knowledge is needed about low- to moderate-effect underlying loci in order to enhance seed germination effectively by improving the genetic background and incorporating favorable alleles. A total of 17 QTL were detected for seed germination-related traits, for which the favorable alleles often corresponded to the most frequent alleles in the panel. Genomic and phenomic predictions methods provided moderate-to-high predictive abilities, demonstrating the ability to capture small additive and non-additive effects for seed germination. This study also showed that phenomic prediction estimated phenotypic values closer to phenotypic values than GEBV. Finally, as the predictive ability of phenomic prediction was less influenced by the genetic structure of the panel, it is worth using this prediction method to characterize genetic resources, particularly with a view to design prebreeding populations.


Subject(s)
Alleles , Brassica napus , Germination , Phenotype , Quantitative Trait Loci , Seeds , Germination/genetics , Seeds/growth & development , Seeds/genetics , Brassica napus/genetics , Brassica napus/growth & development , Phenomics/methods , Genomics/methods , Genotype , Plant Breeding/methods
2.
Data Brief ; 37: 107247, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34277900

ABSTRACT

Faced with the challenges of adapting agriculture to climate change, seed production should have increased resilience to abiotic stress factors and the expected proliferation of pathogens. This concerns both the nutritional quality and seed vigor, two crucial factors in seedling establishment and yield. Both qualities are acquired during seed development, but how environment influences the genetic and physiological determinisms of these qualities remains to be elucidated. With a world production of 71 Mt of seeds per year, oilseed rape (Brassica napus) is the third largest oleaginous crop. But its productivity must cope with several abiotic stresses, among which drought is one of the main constraints in current and future climate scenarios. In addition, clubroot disease, caused by the pathogen Plasmodiophora brassicae, leads to severe yield losses for the Brassica crops worldwide. Clubroot provokes the formation of galls on the infected roots that can restrict the flow of water and nutrients within the plant throughout the growth cycle. In order to get new insights into the impact of single or combined constraints on seed qualities, metabolic profiling assays were run for a collection of 330 seed samples (including developing, mature and imbibed seeds) harvested from plants of two B. napus cultivars ("Express" and "Montego") that were grown under either drought conditions, the presence of P. brassicae, or a combination of both stresses. Metabolites were identified and quantified by UPLC or GC. In addition, monitoring germination traits was conducted for 60 mature seed lots under in vitro conditions using an automated phenotyping platform. The present dataset contains the raw contents for 42 metabolites (nmol.mg-1 of seed dry weight) filtered and analyzed with statistical tests as well as germination speed and percentages. This dataset is available under accession at Data INRAE. These data will contribute to a better understanding of the crosstalk between the plant responses to water deprivation and/or pathogen attack and how it compromises seed quality. A better understanding of the molecular and physiological responses of the seed to (a)biotic stress on a molecular and physiological will be a first step to meet scientific and technological challenges of adapting seeds to their environment.

3.
Sci Rep ; 11(1): 1404, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446694

ABSTRACT

A high throughput phenotyping tool for seed germination, the ScreenSeed technology, was developed with the aim of screening genotype responsiveness and chemical drugs. This technology was presently used with Arabidopsis thaliana seeds to allow characterizing seed samples germination behavior by incubating seeds in 96-well microplates under defined conditions and detecting radicle protrusion through the seed coat by automated image analysis. This study shows that this technology provides a fast procedure allowing to handle thousands of seeds without compromising repeatability or accuracy of the germination measurements. Potential biases of the experimental protocol were assessed through statistical analyses of germination kinetics. Comparison of the ScreenSeed procedure with commonly used germination tests based upon visual scoring displayed very similar germination kinetics.


Subject(s)
Arabidopsis/growth & development , Germination/physiology , Image Processing, Computer-Assisted , Seeds/growth & development
4.
Data Brief ; 29: 105201, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32071980

ABSTRACT

Several seed and seedling traits are measured to evaluate germination and emergence potential in relation with environmental conditions. More generally, these traits are also measured in the field of ecology as simple traits that can be correlated to other adaptative traits more difficult to measure on adult plants, as for example traits of the rooting system. Methods were developed for deep high throughput phenotyping of hundreds of genotypes from dry seed to the end of heterotrophic growth. The present dataset comes from a project on genotyping and phenotyping of populations of genotypes, with different geographic and genetic origins so as to increase genotypic diversity of sugar beet in terms of germination and early growth traits, evaluated at low temperatures. Data were collected in relation to the creation of the first sugar beet crop ontology. This dataset corresponds to the first automated phenotyping of a population of 198 genotypes and 4 commercial control varieties and is hosted on INRAE public depository under the reference number doi.org/10.15,454/AKNF4Q. The equipment and methods presented here are available on a phenotyping platform opened to collaborative research and adaptable for specific services for characterizing thousands of genotypes on different crops or other species. The phenotyping values can also be linked to genomic information to study the genetic determinism of the trait values.

5.
Plant Methods ; 15: 24, 2019.
Article in English | MEDLINE | ID: mdl-30911323

ABSTRACT

BACKGROUND: The traditional methods for evaluating seeds are usually performed through destructive sampling followed by physical, physiological, biochemical and molecular determinations. Whilst proven to be effective, these approaches can be criticized as being destructive, time consuming, labor intensive and requiring experienced seed analysts. Thus, the objective of this study was to investigate the potential of computer vision and multispectral imaging systems supported with multivariate analysis for high-throughput classification of cowpea (Vigna unguiculata) seeds. An automated computer-vision germination system was utilized for uninterrupted monitoring of seeds during imbibition and germination to identify different categories of all individual seeds. By using spectral signatures of single cowpea seeds extracted from multispectral images, different multivariate analysis models based on linear discriminant analysis (LDA) were developed for classifying the seeds into different categories according to ageing, viability, seedling condition and speed of germination. RESULTS: The results revealed that the LDA models had good accuracy in distinguishing 'Aged' and 'Non-aged' seeds with an overall correct classification (OCC) of 97.51, 96.76 and 97%, 'Germinated' and 'Non-germinated' seeds with OCC of 81.80, 79.05 and 81.0%, 'Early germinated', 'Medium germinated' and 'Dead' seeds with OCC of 77.21, 74.93 and 68.00% and among seeds that give 'Normal' and 'Abnormal' seedlings with OCC of 68.08, 64.34 and 62.00% in training, cross-validation and independent validation data sets, respectively. Image processing routines were also developed to exploit the full power of the multispectral imaging system in visualizing the difference among seed categories by applying the discriminant model in a pixel-wise manner. CONCLUSION: The results demonstrated the capability of the multispectral imaging system in the ultraviolet, visible and shortwave near infrared range to provide the required information necessary for the discrimination of individual cowpea seeds to different classes. Considering the short time of image acquisition and limited sample preparation, this stat-of-the art multispectral imaging method and chemometric analysis in classifying seeds could be a valuable tool for on-line classification protocols in cost-effective real-time sorting and grading processes as it provides not only morphological and physical features but also chemical information for the seeds being examined. Implementing image processing algorithms specific for seed quality assessment along with the declining cost and increasing power of computer hardware is very efficient to make the development of such computer-integrated systems more attractive in automatic inspection of seed quality.

6.
Front Plant Sci ; 9: 419, 2018.
Article in English | MEDLINE | ID: mdl-29666629

ABSTRACT

Intense selection for specific seed qualities in winter oilseed rape breeding has had an inadvertent negative influence on seed germination performance. In a panel of 215 diverse winter oilseed rape varieties spanning over 50 years of breeding progress in winter-type rapeseed, we found that low seed erucic acid content and reduced seed glucosinolate content were significantly related with prolonged germination time. Genome-wide association mapping revealed that this relationship is caused by linkage drag between important loci for seed quality and germination traits. One QTL for mean germination time on chromosome A09 co-localized with significant but minor QTL for both seed erucic acid and seed glucosinolate content. This suggested either potential pleiotropy or close linkage of minor factors influencing all three traits. Therefore, a reduction in germination performance may be due to inadvertent co-selection of genetic variants associated with 00 seed quality that have a negative influence on germination. Our results suggest that marker-assisted selection of positive alleles for mean germination time within the modern quality pool can help breeders to maintain maximal germination capacity in new 00-quality oilseed rape cultivars.

7.
PLoS One ; 11(8): e0161185, 2016.
Article in English | MEDLINE | ID: mdl-27532825

ABSTRACT

A wide range of species can be sown as cover crops during fallow periods to provide various ecosystem services. Plant establishment is a key stage, especially when sowing occurs in summer with high soil temperatures and low water availability. The aim of this study was to determine the response of germination to temperature and water potential for diverse cover crop species. Based on these characteristics, we developed contrasting functional groups that group species with the same germination ability, which may be useful to adapt species choice to climatic sowing conditions. Germination of 36 different species from six botanical families was measured in the laboratory at eight temperatures ranging from 4.5-43°C and at four water potentials. Final germination percentages, germination rate, cardinal temperatures, base temperature and base water potential were calculated for each species. Optimal temperatures varied from 21.3-37.2°C, maximum temperatures at which the species could germinate varied from 27.7-43.0°C and base water potentials varied from -0.1 to -2.6 MPa. Most cover crops were adapted to summer sowing with a relatively high mean optimal temperature for germination, but some Fabaceae species were more sensitive to high temperatures. Species mainly from Poaceae and Brassicaceae were the most resistant to water deficit and germinated under a low base water potential. Species were classified, independent of family, according to their ability to germinate under a range of temperatures and according to their base water potential in order to group species by functional germination groups. These groups may help in choosing the most adapted cover crop species to sow based on climatic conditions in order to favor plant establishment and the services provided by cover crops during fallow periods. Our data can also be useful as germination parameters in crop models to simulate the emergence of cover crops under different pedoclimatic conditions and crop management practices.


Subject(s)
Brassicaceae/growth & development , Crops, Agricultural/growth & development , Fabaceae/growth & development , Germination/physiology , Hot Temperature , Poaceae/growth & development , Seeds/physiology , Water , Climate , Crop Production/methods , Droughts , Ecosystem , Nitrogen/metabolism , Soil/chemistry
8.
Front Plant Sci ; 6: 221, 2015.
Article in English | MEDLINE | ID: mdl-25914704

ABSTRACT

Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.). A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60k SNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigor, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding. Conditions during seed production and storage were shown to have a profound effect on seed vigor, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologs of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1), ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4), and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1), which have been shown previously to play a role in seed germination and seedling growth in A. thaliana.

9.
Theor Appl Genet ; 122(2): 429-44, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20878383

ABSTRACT

Enhancing the knowledge on the genetic basis of germination and heterotrophic growth at extreme temperatures is of major importance for improving crop establishment. A quantitative trait loci (QTL) analysis was carried out at sub- and supra-optimal temperatures at these early stages in the model Legume Medicago truncatula. On the basis of an ecophysiological model framework, two populations of recombinant inbred lines were chosen for the contrasting behaviours of parental lines: LR5 at sub-optimal temperatures (5 or 10°C) and LR4 at a supra-optimal temperature (20°C). Seed masses were measured in all lines. For LR5, germination rates and hypocotyl growth were measured by hand, whereas for LR4, imbibition and germination rates as well as early embryonic axis growth were measured using an automated image capture and analysis device. QTLs were found for all traits. The phenotyping framework we defined for measuring variables, distinguished stages and enabled identification of distinct QTLs for seed mass (chromosomes 1, 5, 7 and 8), imbibition (chromosome 4), germination (chromosomes 3, 5, 7 and 8) and heterotrophic growth (chromosomes 1, 2, 3 and 8). The three QTL identified for hypocotyl length at sub-optimal temperature explained the largest part of the phenotypic variation (60% together). One digenic interaction was found for hypocotyl width at sub-optimal temperature and the loci involved were linked to additive QTLs for hypocotyl elongation at low temperature. Together with working on a model plant, this approach facilitated the identification of genes specific to each stage that could provide reliable markers for assisting selection and improving crop establishment. With this aim in view, an initial set of putative candidate genes was identified in the light of the role of abscissic acid/gibberellin balance in regulating germination at high temperatures (e.g. ABI4, ABI5), the molecular cascade in response to cold stress (e.g. CBF1, ICE1) and hypotheses on changes in cell elongation (e.g. GASA1, AtEXPA11) with changes in temperatures based on studies at the whole plant scale.


Subject(s)
Germination , Medicago truncatula/growth & development , Medicago truncatula/genetics , Chromosomes, Plant , Crosses, Genetic , Genome-Wide Association Study , Hypocotyl/growth & development , Medicago truncatula/physiology , Phenotype , Quantitative Trait Loci , Temperature
10.
Planta ; 219(3): 479-88, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15060827

ABSTRACT

Mature seeds of the Cape Verde Islands (Cvi) ecotype of Arabidopsis thaliana (L.) Heynh. show a very marked dormancy. Dormant (D) seeds completely fail to germinate in conditions that are favourable for germination whereas non-dormant (ND) seeds germinate easily. Cvi seed dormancy is alleviated by after-ripening, stratification, and also by nitrate or fluridone treatment. Addition of gibberellins to D seeds does not suppress dormancy efficiently, suggesting that gibberellins are not directly involved in the breaking of dormancy. Dormancy expression of Cvi seeds is strongly dependent on temperature: D seeds do not germinate at warm temperatures (20-27 degrees C) but do so easily at a low temperature (13 degrees C) or when a fluridone treatment is given to D seeds sown at high temperature. To investigate the role of abscisic acid (ABA) in dormancy release and maintenance, we measured the ABA content in both ND and D seeds imbibed using various dormancy-breaking conditions. It was found that dry D seeds contained higher amounts of ABA than dry ND after-ripened seeds. During early imbibition in standard conditions, there was a decrease in ABA content in both seeds, the rate of which was slower in D seeds. Three days after sowing, the ABA content in D seeds increased specifically and then remained at a high level. When imbibed with fluridone, nitrate or stratified, the ABA content of D seeds decreased and reached a level very near to that of ND seeds. In contrast, gibberellic acid (GA3) treatment caused a transient increase in ABA content. When D seeds were sown at low optimal temperature their ABA content also decreased to the level observed in ND seeds. The present study indicates that Cvi D and ND seeds can be easily distinguished by their ability to synthesize ABA following imbibition. Treatments used here to break dormancy reduced the ABA level in imbibed D seeds to the level observed in ND seeds, with the exception of GA3 treatment, which was active in promoting germination only when ABA synthesis was inhibited.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis/metabolism , Africa, Western , Arabidopsis/drug effects , Arabidopsis/growth & development , Germination , Gibberellins/pharmacology , Models, Biological , Nitrates/pharmacology , Pyridones/pharmacology , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...