Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 17023, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31745209

ABSTRACT

We investigate an extraordinarily high ductility in a low alloy carbon steel at an elevated temperature after a quenching and partitioning (Q&P) treatment. The conventional (quenched and tempered) reference material does not show similar behavior. Interestingly, the Q&P treated material's ductility is considerably reduced at increasing strain rates while strength remains almost constant. These results indicate the presence of a diffusion-controlled deformation mechanism at elevated temperatures. Our research shows that interlath retained austenite is more stable during deformation at higher temperatures, resulting in a delayed transformation to martensite and therefore to a more pronounced contribution to plastic deformation at (and in the vicinity of) the many interfaces inherently present in this multi-phase steel.

2.
Materials (Basel) ; 11(8)2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30126114

ABSTRACT

Pseudoelastic NiTi shape memory alloys exhibit different stress⁻strain curves and modes of deformation in tension vs. compression. We have recently shown that under a combination of compression and shear, heterogeneous deformation can occur. In the present study, we use digital image correlation to systematically analyze how characteristic features of the nominally uniaxial engineering stress⁻strain curves (particularly the martensite nucleation peak and the plateau length) are affected by extensometer parameters in tension, compression, and the novel load case of shear-compression. By post-experimental analysis of full surface strain field data, the effect of the placement of various virtual extensometers at different locations (with respect to the nucleation site of martensite bands or inhomogeneously deforming regions) and with different gauge lengths is documented. By positioning an extensometer directly on the region corresponding to the nucleating martensite band, we, for the first time, directly record the strain-softening nature of the material-a specific softening behavior that is, for instance, important for the modeling community. Our results show that the stress⁻strain curves, which are often used as a basis for constitutive modeling, are affected considerably by the choice of extensometer, particularly under tensile loading, that leads to a distinct mode of localized deformation/transformation. Under compression-shear loading, inhomogeneous deformation (without lateral growth of martensite bands) is observed. The effects of extensometer gauge length are thus less pronounced than in tension, yet systematic-they are rationalized by considering the relative impact of differently deforming regions.

3.
PLoS One ; 11(3): e0151223, 2016.
Article in English | MEDLINE | ID: mdl-26960134

ABSTRACT

INTRODUCTION: Though xenogeneic acellular scaffolds are frequently used for surgical reconstruction, knowledge of their mechanical properties is lacking. This study compared the mechanical, histological and ultrastructural properties of various native and acellular specimens. MATERIALS AND METHODS: Porcine esophagi, ureters and skin were tested mechanically in a native or acellular condition, focusing on the elastic modulus, ultimate tensile stress and maximum strain. The testing protocol for soft tissues was standardized, including the adaption of the tissue's water content and partial plastination to minimize material slippage as well as templates for normed sample dimensions and precise cross-section measurements. The native and acellular tissues were compared at the microscopic and ultrastructural level with a focus on type I collagens. RESULTS: Increased elastic modulus and ultimate tensile stress values were quantified in acellular esophagi and ureters compared to the native condition. In contrast, these values were strongly decreased in the skin after acellularization. Acellularization-related decreases in maximum strain were found in all tissues. Type I collagens were well-preserved in these samples; however, clotting and a loss of cross-linking type I collagens was observed ultrastructurally. Elastins and fibronectins were preserved in the esophagi and ureters. A loss of the epidermal layer and decreased fibronectin content was present in the skin. DISCUSSION: Acellularization induces changes in the tensile properties of soft tissues. Some of these changes appear to be organ specific. Loss of cross-linking type I collagen may indicate increased mechanical strength due to decreasing transverse forces acting upon the scaffolds, whereas fibronectin loss may be related to decreased load-bearing capacity. Potentially, the alterations in tissue mechanics are linked to organ function and to the interplay of cells and the extracellular matrix, which is different in hollow organs when compared to skin.


Subject(s)
Tensile Strength/physiology , Animals , Collagen Type I/metabolism , Elastic Modulus/physiology , Extracellular Matrix/metabolism , Swine
4.
J Mech Behav Biomed Mater ; 49: 112-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26005842

ABSTRACT

The objective of this study was to evaluate the potential of the partial plastination technique in minimizing material slippage and to discuss the effects on the tensile properties of thin dense connective tissue. The ends of twelve iliotibial tract samples were primed with polyurethane resin and covered by plastic plates to provide sufficient grip between the clamps. The central part of the samples remained in an anatomically unfixed condition. Strain data of twelve partially plastinated samples and ten samples in a completely anatomically unfixed state were obtained using uniaxial crosshead displacement and an optical image tracking technique. Testing of agreement between the strain data revealed ongoing but markedly reduced material slippage in partially plastinated samples compared to the unfixed samples. The mean measurement error introduced by material slippage was up to 18.0% in partially plastinated samples. These findings might complement existing data on measurement errors during material testing and highlight the importance of individual quantitative evaluation of errors that come along with self-made clamping techniques.


Subject(s)
Artifacts , Materials Testing/methods , Mechanical Phenomena , Plastics , Tendons , Adult , Fascia Lata , Female , Humans , Male , Materials Testing/instrumentation , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...