Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Vet Med Assoc ; 234(1): 120-5, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19119976

ABSTRACT

OBJECTIVE: To estimate allele frequencies of the hyperkalaemic periodic paralysis (HYPP), lethal white foal syndrome (LWFS), glycogen branching enzyme deficiency (GBED), hereditary equine regional dermal asthenia (HERDA), and type 1 polysaccharide storage myopathy (PSSM) genes in elite performance subgroups of American Quarter Horses (AQHs). DESIGN: Prospective genetic survey. ANIMALS: 651 elite performance AQHs, 200 control AQHs, and 180 control American Paint Horses (APHs). PROCEDURES: Elite performance AQHs successful in 7 competitive disciplines (barrel racing, cutting, halter, racing, reining, western pleasure, and working cow horse) were geno- typed for 5 disease-causing alleles. Age-matched control AQHs and APHs were used to establish comparative whole-breed estimates of allele frequencies. RESULTS: Highest allele frequencies among control AQHs were for type 1 PSSM (0.055) and GBED (0.054), whereas HERDA (0.021) and HYPP (0.008) were less prevalent. Control APHs uniquely harbored LWFS (0.107) and had high prevalence of HYPP (0.025), relative to AQHs. Halter horse subgroups had significantly greater allele frequencies for HYPP (0.299) and PSSM (0.155). Glycogen branching enzyme deficiency, HERDA, and PSSM were found broadly throughout subgroups; cutting subgroups were distinct for HERDA (0.142), and western pleasure subgroups were distinct for GBED (0.132). Racing and barrel racing subgroups had the lowest frequencies of the 5 disease genes. CONCLUSIONS AND CLINICAL RELEVANCE: Accurate estimates of disease-causing alleles in AQHs and APHs may guide use of diagnostic genetic testing, aid management of genetic diseases, and help minimize production of affected foals.


Subject(s)
Gene Frequency , Genetic Diseases, Inborn/veterinary , Horse Diseases/genetics , Pedigree , 1,4-alpha-Glucan Branching Enzyme/deficiency , 1,4-alpha-Glucan Branching Enzyme/genetics , Animals , Asthenia/genetics , Asthenia/veterinary , Female , Fetal Death/genetics , Fetal Death/veterinary , Genes, Lethal , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Genetic Testing , Glycogen Storage Disease Type IV/genetics , Glycogen Storage Disease Type IV/veterinary , Hair Color/genetics , Horses , Male , Paralysis, Hyperkalemic Periodic/genetics , Paralysis, Hyperkalemic Periodic/veterinary , Pregnancy , Prospective Studies , Syndrome
2.
Am J Vet Res ; 69(12): 1637-45, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19046012

ABSTRACT

OBJECTIVE: To develop a reliable method for converting cultured equine skin-derived fibroblasts into muscle cells. SAMPLE POPULATION: Equine skin-derived fibroblasts. PROCEDURES: The equine myogenic differentiation 1 (eqMyoD) genomic sequence was obtained by use of equine bacterial artificial chromosome screening and PCR sequencing. Total mRNA was extracted from foal skeletal muscle, and eqMyoD cDNA was cloned into a plasmid vector with an internal ribosomal entry site to express bicistronic eqMyoD or enhanced green fluorescent protein (EGFP). Transient expression was confirmed by immunocytochemical analysis and western immunoblots in equine fibroblasts and fibroblasts from National Institutes of Health Swiss mouse embryos, prior to generation of a lentiviral vector containing the same coding sequences. Transformation of equine skin-derived cells into skeletal myotubes was examined by use of immunohistochemical analysis, western immunoblotting, and periodic acid-Schiff staining. RESULTS: eqMyoD mRNA consists of 960 bp and shares high homology with myogenic differentiation 1 from other mammals. Transfection confirmed the expression of a 53-kd protein with mainly nuclear localization. Lentiviral transduction was efficient, with approximately 80% of EGFP-positive cells transformed into multinucleated myotubes during 15 days, as determined by expression of the muscle-specific proteins desmin, troponin-T, and sarcomeric myosin and by cytoplasmic storage of glycogen. CONCLUSIONS AND CLINICAL RELEVANCE: Equine primary fibroblasts were transformed by lentiviral transduction of eqMyoD into fusion-competent myoblasts. This may offer a preferable alternative to primary myoblast cultures for the investigation of cellular defects associated with muscle diseases of horses, such as recurrent exertional rhabdomyolysis and polysaccharide storage myopathy.


Subject(s)
Fibroblasts/cytology , Horses , Lentivirus/physiology , Muscle Fibers, Skeletal/cytology , MyoD Protein/metabolism , Skin/cytology , 3T3 Cells , Amino Acid Sequence , Animals , Gene Expression Regulation/physiology , Humans , Mice , Molecular Sequence Data , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/virology , MyoD Protein/genetics
3.
Genomics ; 89(1): 89-112, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16916595

ABSTRACT

High-resolution physically ordered gene maps for equine homologs of human chromosome 5 (HSA5), viz., horse chromosomes 14 and 21 (ECA14 and ECA21), were generated by adding 179 new loci (131 gene-specific and 48 microsatellites) to the existing maps of the two chromosomes. The loci were mapped primarily by genotyping on a 5000-rad horse x hamster radiation hybrid panel, of which 28 were mapped by fluorescence in situ hybridization. The approximately fivefold increase in the number of mapped markers on the two chromosomes improves the average resolution of the map to 1 marker/0.9 Mb. The improved resolution is vital for rapid chromosomal localization of traits of interest on these chromosomes and for facilitating candidate gene searches. The comparative gene mapping data on ECA14 and ECA21 finely align the chromosomes to sequence/gene maps of a range of evolutionarily distantly related species. It also demonstrates that compared to ECA14, the ECA21 segment corresponding to HSA5 is a more conserved region because of preserved gene order in a larger number of and more diverse species. Further, comparison of ECA14 and the distal three-quarters region of ECA21 with corresponding chromosomal segments in 50 species belonging to 11 mammalian orders provides a broad overview of the evolution of these segments in individual orders from the putative ancestral chromosomal configuration. Of particular interest is the identification and precise demarcation of equid/Perissodactyl-specific features that for the first time clearly distinguish the origins of ECA14 and ECA21 from similar-looking status in the Cetartiodactyls.


Subject(s)
Chromosome Mapping/veterinary , Horses/genetics , Animals , Base Sequence , Biological Evolution , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Human, Pair 5/genetics , Cricetinae , DNA Primers/genetics , Humans , In Situ Hybridization, Fluorescence , Mammals/genetics , Radiation Hybrid Mapping , Species Specificity
4.
J Biol Inorg Chem ; 10(7): 751-60, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16217642

ABSTRACT

The manganese-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase (MndD) from Arthrobacter globiformis CM-2 is an extradiol-cleaving catechol dioxygenase that catalyzes aromatic ring cleavage of 3,4-dihydroxyphenylacetate (DHPA). Based on the recent crystal structure of the MndD-DHPA complex, a series of site-directed mutations were made at a conserved second-sphere residue, histidine 200, to gain insight into and clarify the role this residue plays in the Mn(II)-dependent catalytic mechanism. In this study, we report the activities and spectroscopic data of these H200 variants and their DHPA and 4-nitrocatechol (4-NC) complexes. The data collected from wild-type and mutant MndDs are consistent with a role for H200 interacting with a manganese-bound dioxygen moiety and are inconsistent with other previously proposed roles involving proton transfer. Spectroscopic observations, including unique low-field EPR signals found when DHPA and 4-NC are bound to the Mn(II) center of MndD, are discussed and their relationship to dioxygen activation catalyzed in MndD is explored.


Subject(s)
Arthrobacter/enzymology , Arthrobacter/genetics , Dioxygenases/chemistry , Dioxygenases/genetics , Histidine/chemistry , Manganese/chemistry , Catechols/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Hydrogen-Ion Concentration , Kinetics , Metals/chemistry , Models, Molecular , Mutagenesis, Site-Directed , Mutation
5.
Mamm Genome ; 16(8): 631-49, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16180145

ABSTRACT

A high-resolution (1 marker/700 kb) physically ordered radiation hybrid (RH) and comparative map of 122 loci on equine homologs of human Chromosome 19 (HSA19) shows a variant evolution of these segments in equids/Perissodactyls compared with other mammals. The segments include parts of both the long and the short arm of horse Chromosome 7 (ECA7), the proximal part of ECA21, and the entire short arm of ECA10. The map includes 93 new markers, of which 89 (64 gene-specific and 25 microsatellite) were genotyped on a 5000-rad horse x hamster RH panel, and 4 were mapped exclusively by FISH. The orientation and alignment of the map was strengthened by 21 new FISH localizations, of which 15 represent genes. The approximately sevenfold-improved map resolution attained in this study will prove extremely useful for candidate gene discovery in the targeted equine chromosomal regions. The highlight of the comparative map is the fine definition of homology between the four equine chromosomal segments and corresponding HSA19 regions specified by physical coordinates (bp) in the human genome sequence. Of particular interest are the regions on ECA7 and ECA21 that correspond to the short arm of HSA19-a genomic rearrangement discovered to date only in equids/Perissodactyls as evidenced through comparative Zoo-FISH analysis of the evolution of ancestral HSA19 segments in eight mammalian orders involving about 50 species.


Subject(s)
Chromosomes, Human, Pair 19/genetics , Evolution, Molecular , Horses/genetics , Mammals/genetics , Physical Chromosome Mapping , Animals , Chromosomes, Artificial, Bacterial , Genetic Markers , Genome , Humans , In Situ Hybridization, Fluorescence , Metaphase , Microsatellite Repeats , Radiation Hybrid Mapping
6.
Genomics ; 85(2): 188-200, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15676277

ABSTRACT

High-resolution gene maps of individual equine chromosomes are essential to identify genes governing traits of economic importance in the horse. In pursuit of this goal we herein report the generation of a dense map of horse chromosome 22 (ECA22) comprising 83 markers, of which 52 represent specific genes and 31 are microsatellites. The map spans 831 cR over an estimated 64 Mb of physical length of the chromosome, thus providing markers at approximately 770 kb or 10 cR intervals. Overall, the resolution of the map is to date the densest in the horse and is the highest for any of the domesticated animal species for which annotated sequence data are not yet available. Comparative analysis showed that ECA22 shares remarkable conservation of gene order along the entire length of dog chromosome 24, something not yet found for an autosome in evolutionarily diverged species. Comparison with human, mouse, and rat homologues shows that ECA22 can be traced as two conserved linkage blocks, each related to individual arms of the human homologue-HSA20. Extending the comparison to the chicken genome showed that one of the ECA22 blocks that corresponds to HSA20q shares synteny conservation with chicken chromosome 20, suggesting the segment to be ancestral in mammals and birds.


Subject(s)
Chromosomes , Horses/genetics , Radiation Hybrid Mapping/methods , Vertebrates/genetics , Animals , Biological Evolution , Chromosomes, Artificial, Bacterial , Gene Order , Humans , In Situ Hybridization, Fluorescence , Mice , Polymerase Chain Reaction/methods , Rats , Sequence Tagged Sites
SELECTION OF CITATIONS
SEARCH DETAIL
...