Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 190
Filter
2.
J Appl Physiol (1985) ; 136(6): 1293-1302, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38482572

ABSTRACT

This systematic review and meta-analysis examined the physiological mechanisms responsible for lower peak exercise leg oxygen uptake (V̇o2) in patients with chronic disease. Studies measuring peak leg V̇o2 (primary outcome) and its physiological determinants during large (cycle) or small muscle mass exercise (single-leg knee extension, SLKE) in patients with chronic disease were included in this meta-analysis. Pooled estimates for each outcome were reported as a weighted mean difference (WMD) between chronic disease and controls. We included 10 studies that measured peak leg V̇o2 in patients with chronic disease (n = 109, mean age: 45 yr; encompassing chronic obstructive pulmonary disease, COPD, heart failure with reduced ejection fraction, HFrEF, or chronic renal failure, RF) and age-matched controls (n = 88). In pooled analysis, peak leg V̇o2 (WMD; -0.23 L/min, 95% CI: -0.32 to -0.13), leg oxygen (O2) delivery (WMD: -0.27 L/min, 95% CI: -0.37 to -0.17), and muscle O2 diffusive conductance (WMD: -5.2 mL/min/mmHg, 95% CI: -7.1 to -3.2) were all significantly lower during cycle and SLKE exercise in chronic disease versus controls. These results highlight that during large and small muscle mass exercise in patients with COPD, HFrEF, or RF, there is no single factor causing peak V̇o2 limitations. Specifically, the lower peak V̇o2 in these pathologies is due to not only the expected impairments in convective O2 delivery but also impairments in muscle oxygen diffusive transport from capillary to mitochondria. Whether impaired muscle O2 transport is caused solely by inactivity or additional muscle pathology remains in question.NEW & NOTEWORTHY Peripheral (skeletal muscle and vasculature) factors contribute significantly to reduced exercise capacity during both large and small muscle mass exercise in chronic diseases such as COPD, HFrEF, or RF and should be important targets of therapy in addition to the primary organs (lungs, heart, and kidneys) affected by disease.


Subject(s)
Leg , Muscle, Skeletal , Oxygen Consumption , Humans , Oxygen Consumption/physiology , Leg/blood supply , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Chronic Disease , Exercise/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/metabolism , Oxygen/metabolism , Heart Failure/physiopathology , Heart Failure/metabolism
3.
J Physiol ; 602(3): 445-459, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048175

ABSTRACT

Maximal oxygen (O2 ) uptake ( V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ ) is an important parameter with utility in health and disease. However, the relative importance of O2 transport and utilization capacities in limiting muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ before and after endurance exercise training is not well understood. Therefore, the present study aimed to identify the mechanisms determining muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ pre- and post-endurance exercise training in initially sedentary participants. In five initially sedentary young males, radial arterial and femoral venous P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ (blood samples), leg blood flow (thermodilution), and myoglobin (Mb) desaturation (1 H nuclear magnetic resonance spectroscopy) were measured during maximal single-leg knee-extensor exercise (KE) breathing either 12%, 21% or 100% O2 both pre and post 8 weeks of KE training (1 h, 3 times per week). Mb desaturation was converted to intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ using an O2  half-saturation pressure of 3.2 mmHg. Pre-training muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was not significantly different across inspired O2 conditions (12%: 0.47 ± 0.10; 21%: 0.52 ± 0.13; 100%: 0.54 ± 0.01 L min-1 , all q > 0.174), despite significantly greater muscle mean capillary-intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients in normoxia (34 ± 3 mmHg) and hyperoxia (40 ± 7 mmHg) than hypoxia (29 ± 5 mmHg, both q < 0.024). Post-training muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ was significantly different across all inspired O2 conditions (12%: 0.59 ± 0.11; 21%: 0.68 ± 0.11; 100%: 0.76 ± 0.09 mmHg, all q < 0.035), as were the muscle mean capillary-intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ gradients (12%: 32 ± 2; 21%: 37 ± 2; 100%: 45 ± 7 mmHg, all q < 0.029). In these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle V ̇ O 2 max ${\dot{V}}_{{{\mathrm{O}}}_{\mathrm{2}}{\mathrm{max}}}$ in normoxia from the mitochondrial capacity to utilize O2 to the capacity to transport O2 to the mitochondria. KEY POINTS: Maximal O2 uptake is an important parameter with utility in health and disease. The relative importance of O2 transport and utilization capacities in limiting muscle maximal O2 uptake before and after endurance exercise training is not well understood. We combined the direct measurement of active muscle maximal O2 uptake with the measurement of muscle intracellular P O 2 ${P}_{{{\mathrm{O}}}_{\mathrm{2}}}$ before and after 8 weeks of endurance exercise training. We show that increasing O2 availability did not increase muscle maximal O2 uptake before training, whereas increasing O2 availability did increase muscle maximal O2 uptake after training. The results suggest that, in these initially sedentary participants, endurance exercise training changed the basis of limitation on muscle maximal O2 uptake in normoxia from the mitochondrial capacity to utilize O2 to the capacity to transport O2 to the mitochondria.


Subject(s)
Muscle, Skeletal , Oxygen Consumption , Male , Humans , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Oxygen/metabolism , Exercise/physiology , Hypoxia
4.
J Appl Physiol (1985) ; 135(5): 1012-1022, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37767555

ABSTRACT

Increased intrapulmonary shunt (QS/Qt) and alveolar dead space (VD/VT) are present in early recovery from 2019 Novel Coronavirus (COVID-19). We hypothesized patients recovering from severe critical acute illness (NIH category 3-5) would have greater and longer lasting increased QS/Qt and VD/VT than patients with mild-moderate acute illness (NIH 1-2). Fifty-nine unvaccinated patients (33 males, aged 52 [38-61] yr, body mass index [BMI] 28.8 [25.3-33.6] kg/m2; median [IQR], 44 previous mild-moderate COVID-19, and 15 severe-critical disease) were studied 15-403 days postacute severe acute respiratory syndrome coronavirus infection. Breathing ambient air, steady-state mean alveolar Pco2, and Po2 were recorded simultaneously with arterial Po2/Pco2 yielding aAPco2, AaPo2, and from these, QS/Qt%, VD/VT%, and relative alveolar ventilation (40 mmHg/[Formula: see text], VArel) were calculated. Median [Formula: see text] was 39.4 [35.6-41.1] mmHg, [Formula: see text] 92.3 [87.1-98.2] mmHg; [Formula: see text] 32.8 [28.6-35.3] mmHg, [Formula: see text] 112.9 [109.4-117.0] mmHg, AaPo2 18.8 [12.6-26.8] mmHg, aAPco2 5.9 [4.3-8.0] mmHg, QS/Qt 4.3 [2.1-5.9] %, and VD/VT16.6 [12.6-24.4]%. Only 14% of patients had normal QS/Qt and VD/VT; 1% increased QS/Qt but normal VD/VT; 49% normal QS/Qt and elevated VD/VT; 36% both abnormal QS/Qt and VD/VT. Previous severe critical COVID-19 predicted increased QS/Qt (2.69 [0.82-4.57]% per category severity [95% CI], P < 0.01), but not VD/VT. Increasing age weakly predicted increased VD/VT (1.6 [0.1-3.2]% per decade, P < 0.04). Time since infection, BMI, and comorbidities were not predictors (all P > 0.11). VArel was increased in most patients. In our population, recovery from COVID-19 was associated with increased QS/Qt in 37% of patients, increased VD/VT in 86%, and increased alveolar ventilation up to ∼13 mo postinfection. NIH severity predicted QS/Qt but not elevated VD/VT. Increased VD/VT suggests pulmonary microvascular pathology persists post-COVID-19 in most patients.NEW & NOTEWORTHY Using novel methodology quantifying intrapulmonary shunt and alveolar dead space in COVID-19 patients up to 403 days after acute illness, 37% had increased intrapulmonary shunt and 86% had elevated alveolar dead space likely due to independent pathology. Elevated shunt was partially related to severe acute illness, and increased alveolar dead space was weakly related to increasing age. Ventilation was increased in the majority of patients regardless of previous disease severity. These results demonstrate persisting gas exchange abnormalities after recovery.


Subject(s)
COVID-19 , Respiratory Dead Space , Male , Humans , Acute Disease , Lung , Respiration
5.
Semin Respir Crit Care Med ; 44(5): 569-583, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567251

ABSTRACT

The ways in which oxygen (O2) and carbon dioxide (CO2) are carried in the blood are well known and well understood, with a plethora of textbooks, both general and lung specific, all presenting the topic in a very similar manner. This first of two companion chapters similarly summarizes this information. First, carriage of gases by physical solution is described, followed by discussion of O2, carbon monoxide, and CO2 transport in that order. However, what available texts have not emphasized is why knowing how gases are carried in blood matters, and the second, companion, chapter specifically addresses that critical aspect of gas exchange physiology. In fact, each of the chapters in this volume describes physiological behavior that depends more or less directly on the dissociation curves of O2 and CO2.

6.
Semin Respir Crit Care Med ; 44(5): 584-593, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567252

ABSTRACT

The well-known ways in which O2 and CO2 (and other gases) are carried in the blood were presented in the preceding chapter. However, what the many available texts about O2 and CO2 transport do not emphasize is why knowing how gases are carried in blood matters, and this second, companion, article specifically addresses that critical aspect of gas exchange physiology. During gas exchange, both at the lungs and in the peripheral tissues, it is the shapes and the slopes of the O2 and CO2 binding curves that explain almost all of the behaviors of each gas and the quantitative differences observed between them. This conclusion is derived from first principle considerations of the gas exchange processes. Dissociation curve shape and slope differences explain most of the differences between O2 and CO2 in both diffusive exchange in the lungs and tissues and convective exchange/transport in, and between, the lungs and tissues. In fact, each of the chapters in this volume describes physiological behavior that depends more or less directly on the dissociation curves of O2 and CO2.

7.
J Appl Physiol (1985) ; 135(2): 456-466, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37391886

ABSTRACT

Acute enhancement of peripheral O2 diffusion may accelerate skeletal muscle O2 uptake (V̇o2) kinetics and lessen fatigue during transitions from rest to maximal contractions. Surgically isolated canine gastrocnemius muscles in situ (n = 6) were studied during transitions from rest to 4 min of electrically stimulated isometric tetanic contractions at V̇o2peak, in two conditions: normoxia (CTRL) and hyperoxia ([Formula: see text] = 1.00) + administration of a drug (RSR-13), which right shifts the Hb-O2 dissociation curve (Hyperoxia + RSR-13). Before and during contractions, muscles were pump-perfused with blood at constant elevated flow ([Formula: see text]) and infused with the vasodilator adenosine. Arterial ([Formula: see text]) and muscle venous ([Formula: see text]) O2 concentrations were determined at rest and at 5- to 7-s intervals during contractions; V̇o2 was calculated as [Formula: see text]·([Formula: see text] - [Formula: see text]). Po2 at 50% of Hb saturation (standard P50) and mean microvascular Po2 ([Formula: see text]) were calculated by the Hill equation and a numerical integration technique. P50 [42 ± 7 (means ± SD) mmHg vs. 33 ± 2 mmHg, P = 0.02] and [Formula: see text] (218 ± 73 mmHg vs. 49 ± 4 mmHg, P = 0.003) were higher in Hyperoxia + RSR-13. Muscle force and fatigue were not different in the two conditions. V̇o2 kinetics (monoexponential fitting) were unexpectedly slower in Hyperoxia + RSR-13, due to a longer time delay (TD) [9.9 ± 1.7 s vs. 4.4 ± 2.2 s (P = 0.001)], whereas the time constant (τ) was not different [13.7 ± 4.3 s vs. 12.3 ± 1.9 s (P = 0.37)]; the mean response time (TD + τ) was longer in Hyperoxia + RSR-13 [23.6 ± 3.5 s vs. 16.7 ± 3.2 s (P = 0.003)]. Increased O2 availability deriving, in Hyperoxia + RSR-13, from higher [Formula: see text] and from presumably greater intramuscular O2 stores did not accelerate the primary component of the V̇o2 kinetics, and delayed the metabolic activation of oxidative phosphorylation.NEW & NOTEWORTHY In isolated perfused skeletal muscle, during transitions from rest to V̇o2peak, hyperoxia and a right-shifted oxyhemoglobin dissociation curve increased O2 availability by increasing microvascular Po2 and by presumably increasing intramuscular O2 stores. The interventions did not accelerate the primary component of the V̇o2 kinetics (as calculated from blood O2 unloading) and delayed the metabolic activation of oxidative phosphorylation. V̇o2 kinetics appear to be mainly controlled by intramuscular factors related to the use of high-energy "buffers."


Subject(s)
Hyperoxia , Animals , Dogs , Hyperoxia/metabolism , Oxygen/metabolism , Oxygen Consumption/physiology , Muscle, Skeletal/physiology , Kinetics
9.
J Appl Physiol (1985) ; 134(1): 36-49, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36417198

ABSTRACT

In chronic mountain sickness (CMS), increased blood oxygen (O2)-carrying capacity due to excessive erythrocytosis (EE, [Hb] ≥ 21 g/dL) could be offset, especially during exercise by both impaired cardiac output (Q̇t) and O2 diffusion limitation in lungs and muscle. We hypothesized that EE results in reduced peak V̇o2 despite increased blood O2-carrying capacity, and that isovolumic hemodilution (IVHD) improves exercise capacity. In 14 male residents of Cerro de Pasco, Peru (4,340 m), six with and eight without EE, we measured peak cycle-exercise capacity, V̇o2, Q̇t, arterial blood gas parameters, and (resting) blood volume. This was repeated for participants with EE after IVHD, reducing hematocrit by 20% (from 67% to 53%). From these data, we quantified the major O2 transport pathway components (ventilation, pulmonary alveolar-capillary diffusion, Q̇t, and blood-muscle mitochondria diffusion). Participants with EE had similar peak V̇o2, systemic O2 delivery, and O2 extraction as non-EE controls, however, with lower Q̇t and higher arterial [O2]. After IVHD, peak V̇o2 was preserved (but not enhanced), with lower O2 delivery (despite higher Q̇t) balanced by greater O2 extraction. The considerable variance in exercise capacity across the 14 individuals was explained essentially completely by differences in both pulmonary and muscle O2 diffusional conductances and not by any differences in ventilation, [Hb], nor Q̇t. In conclusion, EE does not result in lower peak V̇o2 in Andean males, and IVHD maintains, but does not enhance, exercise capacity.NEW & NOTEWORTHY Male Andean highlanders with and without excessive erythrocytosis (EE) have similar peak V̇o2 at 4,340 m, with higher arterial [O2] in EE and lower cardiac output (Q̇t), thus maintaining similar O2 delivery. Peak V̇o2 in participants with EE was unaffected by isovolumic hemodilution (hematocrit reduced from 67% to 53%), with lower O2 delivery balanced by slightly increased Q̇t and greater O2 extraction. Differences in lung and muscle diffusing capacity, and not hematocrit variation, accounted for essentially all interindividual variance in peak V̇o2.


Subject(s)
Altitude Sickness , Polycythemia , Humans , Male , Altitude , Exercise Tolerance , Hemodilution , Oxygen/metabolism , Oxygen Consumption
10.
J Muscle Res Cell Motil ; 44(2): 73-88, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36434438

ABSTRACT

This article lays out the determinants of maximal O2 consumption (VO2max) achieved during high intensity endurance exercise. It is not a traditional topical review but rather an educational essay that intertwines chance observations made during an unrelated research project with a subsequent program of stepwise thought, analysis and experimentation to reveal how O2 is delivered to and used by the mitochondria. The centerpiece is the recognition that O2 is delivered by an inter-dependent system of transport components functioning as a "bucket brigade", made up of the lungs, heart, blood and circulation, and the muscles themselves, each of which affects O2 transport by similar amounts as they change. There is thus no single "limiting factor" to VO2max. Moreover, each component is shown to quantitatively affect the performance of the others. Mitochondrial respiration is integrated into the O2 transport system analysis to reveal its separate contribution to VO2max, and to show that mitochondrial PO2 at VO2max must be extremely low. Clinical application of the O2 transport systems analysis is described to separate central cardiopulmonary from peripheral tissue contributions to exercise limitation, illustrated by a study of patients with COPD. Finally, a short discussion of why muscles operating maximally must endure an almost anoxic state is offered. The hope is that in sum, both the increased understanding of O2 transport and the scientific approach to achieving that understanding described in the review can serve as a model for solving other complex problems going forward.


Subject(s)
Muscles , Oxygen Consumption , Humans , Oxygen Consumption/physiology , Exercise/physiology
11.
Eur Respir J ; 61(1)2023 01.
Article in English | MEDLINE | ID: mdl-36137595

ABSTRACT

BACKGROUND: Pathological evidence suggests that coronavirus disease 2019 (COVID-19) pulmonary infection involves both alveolar damage (causing shunt) and diffuse microvascular thrombus formation (causing alveolar dead space). We propose that measuring respiratory gas exchange enables detection and quantification of these abnormalities. We aimed to measure shunt and alveolar dead space in moderate COVID-19 during acute illness and recovery. METHODS: We studied 30 patients (22 males; mean±sd age 49.9±13.5 years) 3-15 days from symptom onset and again during recovery, 55±10 days later (n=17). Arterial blood (breathing ambient air) was collected while exhaled oxygen and carbon dioxide concentrations were measured, yielding alveolar-arterial differences for each gas (P A-aO2 and P a-ACO2 , respectively) from which shunt and alveolar dead space were computed. RESULTS: For acute COVID-19 patients, group mean (range) for P A-aO2 was 41.4 (-3.5-69.3) mmHg and for P a-ACO2 was 6.0 (-2.3-13.4) mmHg. Both shunt (% cardiac output) at 10.4% (0-22.0%) and alveolar dead space (% tidal volume) at 14.9% (0-32.3%) were elevated (normal: <5% and <10%, respectively), but not correlated (p=0.27). At recovery, shunt was 2.4% (0-6.1%) and alveolar dead space was 8.5% (0-22.4%) (both p<0.05 versus acute). Shunt was marginally elevated for two patients; however, five patients (30%) had elevated alveolar dead space. CONCLUSIONS: We speculate impaired pulmonary gas exchange in early COVID-19 pneumonitis arises from two concurrent, independent and variable processes (alveolar filling and pulmonary vascular obstruction). For most patients these resolve within weeks; however, high alveolar dead space in ∼30% of recovered patients suggests persistent pulmonary vascular pathology.


Subject(s)
COVID-19 , Pneumonia , Respiration Disorders , Male , Humans , Adult , Middle Aged , Respiratory Dead Space , Tidal Volume , Oxygen , Pulmonary Gas Exchange , Carbon Dioxide
12.
Intern Emerg Med ; 17(5): 1277-1286, 2022 08.
Article in English | MEDLINE | ID: mdl-35819698

ABSTRACT

Patients with COPD exhibit limited exercise endurance time compared to healthy age-matched individuals. Oxygen supplementation is often applied to improve endurance time during pulmonary rehabilitation in patients with COPD and thus a comprehensive understanding of the mechanisms leading to improved endurance is desirable. This review analyses data from two studies by our research group investigating the effect of oxygen supplementation on cerebrovascular, systemic, respiratory and locomotor muscle oxygen availability on the same cohort of individuals with advanced COPD, and the mechanisms associated with improved endurance time in hyperoxia, which was essentially doubled (at the same power output). In hyperoxia at isotime (the time at which patients became exhausted in normoxia) exercise was associated with greater respiratory and locomotor muscle (but not frontal cortex) oxygen delivery (despite lower cardiac output), lower lactate concentration and less tachypnoea. Frontal cortex oxygen saturation was higher, and respiratory drive lower. Hence, improved endurance in hyperoxia appears to be facilitated by several factors: increased oxygen availability to the respiratory and locomotor muscles, less metabolic acidosis, and lower respiratory drive. At exhaustion in both normoxia and hyperoxia, only cardiac output and breathing pattern were not different between conditions. However, minute ventilation in hyperoxia exceeded the critical level of ventilatory constraints (VE/MVV > 75-80%). Lactate remained lower and respiratory and locomotor muscle oxygen delivery greater in hyperoxia, suggesting greater muscle oxygen availability improving muscle function. Taken together, these findings suggest that central haemodynamic and ventilatory limitations and not contracting muscle conditions dictate endurance time in COPD during exercise in hyperoxia.


Subject(s)
Hyperoxia , Pulmonary Disease, Chronic Obstructive , Exercise Tolerance/physiology , Humans , Hyperoxia/metabolism , Lactates , Oxygen/therapeutic use , Oxygen Consumption/physiology , Oxygen Inhalation Therapy , Pulmonary Disease, Chronic Obstructive/therapy
13.
J Appl Physiol (1985) ; 132(4): 1104-1113, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35323050

ABSTRACT

The common pulmonary consequence of SARS-CoV-2 infection is pneumonia, but vascular clot may also contribute to COVID pathogenesis. Imaging and hemodynamic approaches to identifying diffuse pulmonary vascular obstruction (PVO) in COVID (or acute lung injury generally) are problematic particularly when pneumonia is widespread throughout the lung and hemodynamic consequences are buffered by pulmonary vascular recruitment and distention. Although stimulated by COVID-19, we propose a generally applicable bedside gas exchange approach to identifying PVO occurring alone or in combination with pneumonia, addressing both its theoretical and practical aspects. It is based on knowing that poorly (or non) ventilated regions, as occur in pneumonia, affect O2 more than CO2, whereas poorly (or non) perfused regions, as seen in PVO, affect CO2 more than O2. Exhaled O2 and CO2 concentrations at the mouth are measured over several ambient-air breaths, to determine mean alveolar Po2 and Pco2. A single arterial blood sample is taken over several of these breaths for arterial Po2 and Pco2. The resulting alveolar-arterial Po2 and Pco2 differences (AaPo2, aAPco2) are converted to corresponding physiological shunt and deadspace values using the Riley and Cournand 3-compartment model. For example, a 30% shunt (from pneumonia) with no alveolar deadspace produces an AaPO2 of almost 50 torr, but an aAPco2 of only 3 torr. In contrast, a 30% alveolar deadspace (from PVO) without shunt leads to an AaPO2 of only 12 torr, but an aAPco2 of 9 torr. This approach can identify and quantify physiological shunt and deadspace when present singly or in combination.NEW & NOTEWORTHY Identifying pulmonary vascular obstruction in the presence of pneumonia (e.g., in COVID-19) is difficult. We present here conversion of bedside measurements of arterial and alveolar Po2 and Pco2 into values for shunt and deadspace-when both coexist-using Riley and Cournand's 3-compartment gas exchange model. Deadspace values higher than expected from shunt alone indicate high ventilation/perfusion ratio areas likely reflecting (micro)vascular obstruction.


Subject(s)
COVID-19 , Lung Diseases , Carbon Dioxide , Humans , Pulmonary Gas Exchange/physiology , SARS-CoV-2
16.
JMIR Res Protoc ; 10(5): e25556, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33970864

ABSTRACT

BACKGROUND: Recent studies have revealed that many discharged patients with COVID-19 experience ongoing symptoms months later. Rehabilitation interventions can help address the consequences of COVID-19, including medical, physical, cognitive, and psychological problems. To our knowledge, no studies have investigated the effects of rehabilitation following discharge from hospital for patients with COVID-19. OBJECTIVE: The specific aims of this project are to investigate the effects of a 12-week exercise program on pulmonary fibrosis in patients recovering from COVID-19. A further aim will be to examine how Chinese herbal medicines as well as the gut microbiome and its metabolites regulate immune function and possibly autoimmune deficiency in the rehabilitation process. METHODS: In this triple-blinded, randomized, parallel-group, controlled clinical trial, we will recruit adult patients with COVID-19 who have been discharged from hospital in Hong Kong and are experiencing impaired lung function and pulmonary function. A total of 172 eligible patients will be randomized into four equal groups: (1) cardiorespiratory exercise plus Chinese herbal medicines group, (2) cardiorespiratory exercise only group, (3) Chinese herbal medicines only group, and (4) waiting list group (in which participants will receive Chinese herbal medicines after 24 weeks). These treatments will be administered for 12 weeks, with a 12-week follow-up period. Primary outcomes include dyspnea, fatigue, lung function, pulmonary function, blood oxygen levels, immune function, blood coagulation, and related blood biochemistry. Measurements will be recorded prior to initiating the above treatments and repeated at the 13th and 25th weeks of the study. The primary analysis is aimed at comparing the outcomes between groups throughout the study period with an α level of .05 (two-tailed). RESULTS: The trial has been approved by the university ethics committee following the Declaration of Helsinki (approval number: REC/19-20/0504) in 2020. The trial has been recruiting patients. The data collection will be completed in 24 months, from January 1, 2021, to December 31, 2022. CONCLUSIONS: Given that COVID-19 and its sequelae would persist in human populations, important findings from this study would provide valuable insights into the mechanisms and processes of COVID-19 rehabilitation. TRIAL REGISTRATION: ClinicalTrials.gov NCT04572360; https://clinicaltrials.gov/ct2/show/NCT04572360. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/25556.

18.
Eur Respir J ; 58(2)2021 08.
Article in English | MEDLINE | ID: mdl-33446612

ABSTRACT

Both convective oxygen (O2) transport to, and diffusive transport within, skeletal muscle are markedly diminished in patients with COPD. However, it is unknown how these determinants of peak muscle O2 uptake (V'mO2peak) respond to exercise training in patients with COPD. Therefore, the purpose of this study was to assess the plasticity of skeletal muscle O2 transport determinants of V'mO2peak in patients with COPD.Adaptations to 8 weeks of single-leg knee-extensor exercise training were measured in eight patients with severe COPD (mean±sem forced expiratory volume in 1 s (FEV1) 0.9±0.1 L) and eight healthy, well-matched controls. Femoral arterial and venous blood samples, and thermodilution-assessed leg blood flow were used to determine muscle O2 transport and utilisation at maximal exercise pre- and post-training.Training increased V'mO2peak in both COPD (by ∼26% from 271±29 to 342±35 mL·min-1) and controls (by ∼32% from 418±37 to 553±41 mL·min-1), restoring V'mO2peak in COPD to only ∼80% of pre-training control V'mO2peak Muscle diffusive O2 transport increased similarly in both COPD (by ∼38% from 6.6±0.9 to 9.1±0.9 mL·min-1·mmHg-1) and controls (by ∼36% from 10.4±0.7 to 14.1±0.8 mL·min-1·mmHg-1), with the patients reaching ∼90% of pre-training control values. In contrast, muscle convective O2 transport increased significantly only in controls (by ∼26% from 688±57 to 865±69 mL·min-1), leaving patients with COPD (438±45 versus 491±51 mL·min-1) at ∼70% of pre-training control values.While muscle diffusive O2 transport in COPD was largely restored by exercise training, V'mO2peak remained constrained by limited plasticity in muscle convective O2 transport.


Subject(s)
Oxygen Consumption , Pulmonary Disease, Chronic Obstructive , Exercise , Exercise Test , Humans , Muscle, Skeletal , Oxygen/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/therapy
19.
Exp Physiol ; 105(12): 2168-2177, 2020 12.
Article in English | MEDLINE | ID: mdl-32936962

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does vascular endothelial growth factor (VEGF) expressed by both endothelial cells and skeletal myofibres maintain the number of skeletal muscle capillaries and regulate endurance exercise? What is the main finding and its importance? VEGF expressed by both endothelial cells and skeletal myofibres is not essential for maintaining capillary number but does contribute to exercise performance. ABSTRACT: Many chronic diseases lead to exercise intolerance, with loss of skeletal muscle capillaries. While many muscle cell types (myofibres, satellite cells, endothelial cells, macrophages and fibroblasts) express vascular endothelial growth factor (VEGF), most muscle VEGF is stored in myofibre vesicles which can release VEGF to signal VEGF receptor-expressing cells. VEGF gene ablation in myofibres or endothelial cells alone does not cause capillary regression. We hypothesized that simultaneously deleting the endothelial cell (EC) and skeletal myofibre (Skm) VEGF gene would cause capillary regression and impair exercise performance. This was tested in adult mice by simultaneous conditional deletion of the VEGF gene (Skm/EC-VEGF-/- mice) through the use of VEGFLoxP, HSA-Cre-ERT2 and PDGFb-iCre-ERT2 transgenes. These double-deletion mice were compared to three control groups - WT, EC VEGF gene deletion alone and myofibre VEGF gene deletion alone. Three weeks after initiating gene deletion, Skm/EC-VEGF-/- mice, but not SkmVEGF-/- or EC-VEGF-/- mice, reached exhaustion 40 min sooner than WT mice in treadmill tests (P = 0.002). WT, SkmVEGF-/- and EC-VEGF-/- , but not Skm/EC-VEGF-/- , mice gained weight over the 3 weeks. Capillary density, fibre area and capillary: fibre ratio in soleus, plantaris, gastrocnemius and cardiac papillary muscle were similar across the groups. Phosphofructokinase and pyruvate dehydrogenase activities increased only in Skm/EC-VEGF-/- mice. These data suggest that deletion of the VEGF gene simultaneously in endothelial cells and myofibres, while reducing treadmill endurance and despite compensatory augmentation of glycolysis, is not required for muscle capillary maintenance. Reduced endurance remains unexplained, but may possibly be related to a role for VEGF in controlling perfusion of contracting muscle.


Subject(s)
Capillaries/physiology , Endothelial Cells/physiology , Gene Silencing/physiology , Muscle Fibers, Skeletal/physiology , Physical Conditioning, Animal/physiology , Vascular Endothelial Growth Factors/genetics , Animals , Capillaries/metabolism , Endothelial Cells/metabolism , Exercise Test/methods , Male , Mice , Muscle Contraction/genetics , Muscle Fibers, Skeletal/metabolism , Myocardium/metabolism , Neovascularization, Physiologic/genetics
20.
Physiol Rep ; 8(13): e14488, 2020 07.
Article in English | MEDLINE | ID: mdl-32638530

ABSTRACT

Proton magnetic resonance (MR) imaging to quantify regional ventilation-perfusion ( V˙A/Q˙ ) ratios combines specific ventilation imaging (SVI) and separate proton density and perfusion measures into a composite map. Specific ventilation imaging exploits the paramagnetic properties of O2 , which alters the local MR signal intensity, in an FI O2 -dependent manner. Specific ventilation imaging data are acquired during five wash-in/wash-out cycles of breathing 21% O2 alternating with 100% O2 over ~20 min. This technique assumes that alternating FI O2 does not affect V˙A/Q˙ heterogeneity, but this is unproven. We tested the hypothesis that alternating FI O2 exposure increases V˙A/Q˙ mismatch in nine patients with abnormal pulmonary gas exchange and increased V˙A/Q˙ mismatch using the multiple inert gas elimination technique (MIGET).The following data were acquired (a) breathing air (baseline), (b) breathing alternating air/100% O2 during an emulated-SVI protocol (eSVI), and (c) 20 min after ambient air breathing (recovery). MIGET heterogeneity indices of shunt, deadspace, ventilation versus V˙A/Q˙ ratio, LogSD V˙ , and perfusion versus V˙A/Q˙ ratio, LogSD Q˙ were calculated. LogSD V˙ was not different between eSVI and baseline (1.04 ± 0.39 baseline, 1.05 ± 0.38 eSVI, p = .84); but was reduced compared to baseline during recovery (0.97 ± 0.39, p = .04). There was no significant difference in LogSD Q˙ across conditions (0.81 ± 0.30 baseline, 0.79 ± 0.15 eSVI, 0.79 ± 0.20 recovery; p = .54); Deadspace was not significantly different (p = .54) but shunt showed a borderline increase during eSVI (1.0% ± 1.0 baseline, 2.6% ± 2.9 eSVI; p = .052) likely from altered hypoxic pulmonary vasoconstriction and/or absorption atelectasis. Intermittent breathing of 100% O2 does not substantially alter V˙A/Q˙ matching and if SVI measurements are made after perfusion measurements, any potential effects will be minimized.


Subject(s)
Hyperoxia/physiopathology , Intermittent Positive-Pressure Breathing/methods , Magnetic Resonance Imaging/methods , Ventilation-Perfusion Ratio , Aged , Female , Humans , Male , Middle Aged , Noble Gases
SELECTION OF CITATIONS
SEARCH DETAIL
...