Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
AoB Plants ; 82016 Jan 27.
Article in English | MEDLINE | ID: mdl-26819259

ABSTRACT

Plants with a climbing growth habit possess unique biomechanical properties arising from adaptations to changing loading conditions connected with close attachment to mechanical supports. In monocot climbers, mechanical adaptation is restricted by the absence of a bifacial vascular cambium. Flagellaria indica was used to investigate the mechanical properties and adaptations of a monocot climber that, uniquely, attaches to the surrounding vegetation via leaf tendrils. Biomechanical methods such as three-point bending and torsion tests were used together with anatomical studies on tissue development, modification and distribution. In general, the torsional modulus was lower than the bending modulus; hence, torsional stiffness was less than flexural stiffness. Basal parts of mature stems showed the greatest stiffness while that of more apical stem segments levelled off. Mechanical properties were modulated via tissue maturation processes mainly affecting the peripheral region of the stem. Peripheral vascular bundles showed a reduction in the amount of conducting tissue while the proportion and density of the bundle sheath increased. Furthermore, adjacent bundle sheaths merged resulting in a dense ring of fibrous tissue. Although F. indica lacks secondary cambial growth, the climbing habit is facilitated by a complex interaction of tissue maturation and attachment.

2.
Genome Biol Evol ; 8(2): 345-63, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26739167

ABSTRACT

Plastid genomes of photosynthetic flowering plants are usually highly conserved in both structure and gene content. However, the plastomes of parasitic and mycoheterotrophic plants may be released from selective constraint due to the reduction or loss of photosynthetic ability. Here we present the greatly reduced and highly divergent, yet functional, plastome of the nonphotosynthetic holoparasite Hydnora visseri (Hydnoraceae, Piperales). The plastome is 27 kb in length, with 24 genes encoding ribosomal proteins, ribosomal RNAs, tRNAs, and a few nonbioenergetic genes, but no genes related to photosynthesis. The inverted repeat and the small single copy region are only approximately 1.5 kb, and intergenic regions have been drastically reduced. Despite extreme reduction, gene order and orientation are highly similar to the plastome of Piper cenocladum, a related photosynthetic plant in Piperales. Gene sequences in Hydnora are highly divergent and several complementary approaches using the highest possible sensitivity were required for identification and annotation of this plastome. Active transcription is detected for all of the protein-coding genes in the plastid genome, and one of two introns is appropriately spliced out of rps12 transcripts. The whole-genome shotgun read depth is 1,400× coverage for the plastome, whereas the mitochondrial genome is covered at 40× and the nuclear genome at 2×. Despite the extreme reduction of the genome and high sequence divergence, the presence of syntenic, long transcriptionally active open-reading frames with distant similarity to other plastid genomes and a high plastome stoichiometry relative to the mitochondrial and nuclear genomes suggests that the plastome remains functional in H. visseri. A four-stage model of gene reduction, including the potential for complete plastome loss, is proposed to account for the range of plastid genomes in nonphotosynthetic plants.


Subject(s)
Genetic Variation , Genome, Plant , Genome, Plastid , Piperaceae/genetics , Base Sequence , DNA, Intergenic/genetics , Evolution, Molecular , Introns , Molecular Sequence Data , Open Reading Frames , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Ribosomal Proteins/genetics
3.
Ann Bot ; 113(7): 1139-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24694829

ABSTRACT

BACKGROUND AND AIMS: The order Piperales has the highest diversity of growth forms among the earliest angiosperm lineages, including trees, shrubs, climbers and herbs. However, within the perianth-bearing Piperales (Asarum, Saruma, Lactoris, Hydnora, Prosopanche, Thottea and Aristolochia), climbing species only occur in the most species-rich genus Aristolochia. This study traces anatomical and morphological traits among these lineages, to detect trends in growth form evolution and developmental processes. METHODS: Transverse stem sections of different developmental stages of representatives of Asarum, Saruma, Lactoris, Hydnora, Thottea and Aristolochia were compared and anatomical traits were linked to growth form evolution. Biomechanical properties of representative climbers were determined in three-point bending tests and are discussed based on the anatomical observations. Growth form evolution of the perianth-bearing Piperales was reconstructed by ancestral character state reconstruction using Mesquite. KEY RESULTS: While species of Asarum and Saruma are exclusively herbaceous, species of the remaining genera show a higher diversity of growth habit and anatomy. This growth form diversity is accompanied by a more complex stem anatomy and appropriate biomechanical properties. The ancestral growth form of the perianth-bearing Piperales is reconstructed with either a shrub-like or herbaceous character state, while the following three backbone nodes in the reconstruction show a shrub-like character state. Accordingly, the climbing habit most probably evolved in the ancestor of Aristolochia. CONCLUSIONS: Since the ancestor of the perianth-bearing Piperales has been reconstructed with a herb- or shrub-like habit, it is proposed that the climbing habit is a derived growth form, which evolved with the diversification of Aristolochia, and might have been a key feature for its diversification. Observed anatomical synapomorphies, such as the perivascular fibres in Lactoris, Thottea and Aristolochia, support the phylogenetic relationship of several lineages within the perianth-bearing Piperales. In addition, the hypothesis that the vegetative organs of the holoparasitic Hydnoraceae are most probably rhizomes is confirmed.


Subject(s)
Aristolochiaceae/anatomy & histology , Aristolochiaceae/growth & development , Plant Stems/anatomy & histology , Plant Stems/growth & development , Biological Evolution , Biomechanical Phenomena
4.
Am J Bot ; 99(10): 1609-29, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22984094

ABSTRACT

PREMISE OF THE STUDY: A large range of growth forms is a notable aspect of angiosperm diversity and arguably a key element of their success. However, few studies within a phylogenetic context have explored how anatomical, developmental, and biomechanical traits are linked with growth form evolution. Aristolochia (∼500 species) consists predominantly of climbers, but a handful of shrub-like species are known from Aristolochia subgenus Isotrema (hereafter, shortened to Isotrema). We test hypotheses proposing that the establishment of functional traits linked to lianescence might limit the ability to evolve structurally diverse growth forms, particularly self-supporting forms. • METHODS: We focus on the origin of the shrub habit in Isotrema, from which we sampled representatives from climbing to self-supporting forms. Morphological, anatomical, and biomechanical characters are optimized on a chloroplast- and nuclear-derived phylogeny. • KEY RESULTS: Character-state reconstructions revealed that the climbing habit is plesiomorphic in Isotrema and shrub-like forms are derived from climbers. However, shrubs do not constitute a monophyletic group. Both shrubs and climbers show large multiseriate rays, but differ in terms of vessel size and proportion of fibers and soft tissues. • CONCLUSION: We suggest that while shrub-like species might have partly escaped from the constraints of life as lianas; their height size and stability are not typical of self-supporting shrubs and trees. Shrubs retained lianoid stem characters that are known to promote flexibility such as ray parenchyma. The transitions to a shrub-like form likely involved relatively simple, developmental changes that may be attributed to heterochronic processes.


Subject(s)
Aristolochia/anatomy & histology , Aristolochia/growth & development , Biological Evolution , Aristolochia/physiology , Biomechanical Phenomena , Databases, Genetic , Ecosystem , Elastic Modulus , Phylogeny , Plant Stems/physiology , Xylem/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...