Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbes ; 5: xtae009, 2024.
Article in English | MEDLINE | ID: mdl-38606354

ABSTRACT

Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.

2.
Clin Microbiol Infect ; 30(3): 396.e1-396.e5, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38065364

ABSTRACT

OBJECTIVES: Enterococcus faecalis can adopt both a commensal and a nosocomial lifestyle, resisting numerous antibiotics. In this study, we aim to investigate the relationship between the cell wall (CW) thickness and decreased susceptibility to vancomycin (VD) in van-gene negative clinical isolates of E. faecalis (nMIC 8 = 2, nMIC 4 = 3, ST30, ST40, and ST59). METHODS: The CW thickness was assessed in VD strains and compared with vancomycin susceptible isolates of the same sequence type (ST) (Vancomycin susceptible [VS]; nMIC 2 = 5). The VD and VS strains were subjected to serial passage (evolved [ev]) with and without vancomycin selection. Subsequent measurements of CW thickness and vancomycin MICs were performed. RESULTS: The VD strains exhibited increased CW thickness when compared with ST-related VS strains (ΔCW thickness VD vs. VS ST30 25 nm, ST59 15 nm, and ST40 1 nm). Serial passages without vancomycin selection led to a decrease in CW thickness and vancomycin MIC in VD strains (ΔCW thickness VD vs. evVD ST30 22 nm, ST59 3 nm, and ST40 2 nm). Serial passages with vancomycin selection caused an increase in CW thickness and vancomycin MIC in ST-related VS strains (ΔCW thickness VS vs. evVS ST30 22 nm, ST59 16 nm, and ST40 1 nm). DISCUSSION: Adaptive changes in CW thickness were observed in response to vancomycin exposure. Increased CW thickness correlated with decreased vancomycin susceptibility, whereas decreased CW thickness correlated with increased vancomycin susceptibility. Core single nucleotide polymorphisms in the evolved mutants were mostly found in genes encoding proteins associated with the cytoplasm or the cytoplasmic membrane. The potential relevance of these adaptive changes is underlined by the observed phenotypes in clinical isolates. Our findings emphasize the importance of monitoring adaptive changes, as vancomycin-resistant enterococci infections are a growing concern.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Humans , Vancomycin/pharmacology , Enterococcus faecalis/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Cell Wall , Gram-Positive Bacterial Infections/microbiology , Enterococcus faecium/genetics
3.
J Glob Antimicrob Resist ; 36: 116-122, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38128726

ABSTRACT

OBJECTIVES: Enterococci are opportunistic pathogens with plastic genomes that evolve, acquire, and transmit antimicrobial-resistant determinants such as vancomycin resistance clusters. While vancomycin-resistant enterococci (VRE) have emerged as successful nosocomial pathogens, the mechanism by which vancomycin-susceptible enterococci (VSE) transform to VRE in hospitalized patients remains understudied. METHODS: Genomes of Enterococcus faecium from two critically ill hospitalized patients subjected to multiple antibiotic therapies, including broad-spectrum antibiotics, were investigated. To identify mechanisms of resistance evolution, genomes of vancomycin-susceptible and -resistant isolates were compared. RESULTS: While VSE isolates were initially identified, VRE strains emerged post-vancomycin therapy. Comparative genomics revealed horizontal transmission of mobile genetic elements containing the Tn1549 transposon, which harbours the vanB-type vancomycin resistance gene cluster. This suggests that broad-spectrum antibiotic stress promoted the transfer of resistance-conferring elements, presumably from another gut inhabitant. CONCLUSION: This is one of the first studies investigating VSE and VRE isolates from the same patient. The mechanism of transmission and the within-patient evolution of vancomycin resistance via mobile genetic elements under antibiotic stress is illustrated. Our findings serve as a foundation for future studies building on this knowledge which can further elucidate the dynamics of antibiotic stress, resistance determinant transmission, and interactions within the gut microbiota.


Subject(s)
Enterococcus faecium , Vancomycin-Resistant Enterococci , Humans , Vancomycin/pharmacology , Vancomycin/therapeutic use , Vancomycin-Resistant Enterococci/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus faecium/genetics
4.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003243

ABSTRACT

Enterococcus faecium is a leading cause of nosocomial infections, particularly in immunocompromised patients. The rise of multidrug-resistant E. faecium, including Vancomycin-Resistant Enterococci (VRE), is a major concern. Vaccines are promising alternatives to antibiotics, but there is currently no vaccine available against enterococci. In a previous study, we identified six protein vaccine candidates associated with extracellular membrane vesicles (MVs) produced by nosocomial E. faecium. In this study, we immunized rabbits with two different VRE-derived MV preparations and characterized the resulting immune sera. Both anti-MV sera exhibited high immunoreactivity towards the homologous strain, three additional VRE strains, and eight different unrelated E. faecium strains representing different sequence types (STs). Additionally, we demonstrated that the two anti-MV sera were able to mediate opsonophagocytic killing of not only the homologous strain but also three unrelated heterologous VRE strains. Altogether, our results indicate that E. faecium MVs, regardless of the purification method for obtaining them, are promising vaccine candidates against multidrug-resistant E. faecium and suggest that these naturally occurring MVs can be used as a multi-antigen platform to elicit protective immune responses against enterococcal infections.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Vaccines , Vancomycin-Resistant Enterococci , Animals , Humans , Rabbits , Enterococcus faecalis , Anti-Bacterial Agents/therapeutic use , Gram-Positive Bacterial Infections/prevention & control , Gram-Positive Bacterial Infections/drug therapy , Microbial Sensitivity Tests
5.
Int J Antimicrob Agents ; 62(1): 106849, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37187337

ABSTRACT

Vancomycin variable enterococci (VVE) are van-positive enterococci with a vancomycin-susceptible phenotype (VVE-S) that can convert to a resistant phenotype (VVE-R) and be selected for during vancomycin exposure. VVE-R outbreaks have been reported in Canada and Scandinavian countries. The aim of this study was to examine the presence of VVE in whole genome sequenced (WGS) Australian bacteremia Enterococcus faecium (Efm) isolates collected through the Australian Group on Antimicrobial resistance (AGAR) network. Eight potential VVEAus isolates, all identified as Efm ST1421, were selected based on the presence of vanA and a vancomycin-susceptible phenotype. During vancomycin selection, two potential VVE-S harboring intact vanHAX genes, but lacking the prototypic vanRS and vanZ genes, reverted to a resistant phenotype (VVEAus-R). Spontaneous VVEAus-R reversion occurred at a frequency of 4-6 × 10-8 resistant colonies per parent cell in vitro after 48 h and led to high-level vancomycin and teicoplanin resistance. The S to R reversion was associated with a 44-bp deletion in the vanHAX promoter region and an increased vanA plasmid copy number. The deletion in the vanHAX promoter region enables an alternative constitutive promoter for the expression of vanHAX. Acquisition of vancomycin resistance was associated with a low fitness cost compared with the corresponding VVEAus-S isolate. The relative proportion of VVEAus-R vs. VVEAus-S decreased over time in serial passages without vancomycin selection. Efm ST1421 is one of the predominant VanA-Efm multilocus sequence types found across most regions of Australia, and has also been associated with a major prolonged VVE outbreak in Danish hospitals.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Humans , Vancomycin/pharmacology , Enterococcus faecium/genetics , Anti-Bacterial Agents/pharmacology , DNA Copy Number Variations , Australia/epidemiology , Enterococcus/genetics , Plasmids/genetics , Multigene Family , Gram-Positive Bacterial Infections/epidemiology , Bacterial Proteins/genetics
6.
J Antimicrob Chemother ; 78(3): 586-598, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36719135

ABSTRACT

Acquisition and expression of antimicrobial resistance (AMR) mechanisms in bacteria are often associated with a fitness cost. Thus, evolutionary adaptation and fitness cost compensation may support the advance of subpopulations with a silent resistance phenotype when the antibiotic selection pressure is absent. However, reports are emerging on the transient nature of silent acquired AMR, describing genetic alterations that can change the expression of these determinants to a clinically relevant level of resistance, and the association with breakthrough infections causing treatment failures. This phenomenon of transiently silent acquired AMR (tsaAMR) is likely to increase, considering the overall expansion of acquired AMR in bacterial pathogens. Moreover, the augmented use of genotypic methods in combination with conventional phenotypic antimicrobial susceptibility testing (AST) will increasingly enable the detection of genotype and phenotype discrepancy. This review defines tsaAMR as acquired antimicrobial resistance genes with a corresponding phenotype within the wild-type distribution or below the clinical breakpoint for susceptibility for which genetic alterations can mediate expression to a clinically relevant level of resistance. References to in vivo resistance development and therapeutic failures caused by selected resistant subpopulations of tsaAMR in Gram-positive and Gram-negative pathogens are given. We also describe the underlying molecular mechanisms, including alterations in the expression, reading frame or copy number of AMR determinants, and discuss the clinical relevance concerning challenges for conventional AST.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Bacteria , Phenotype , Microbial Sensitivity Tests
7.
J Antimicrob Chemother ; 76(4): 876-882, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33367710

ABSTRACT

BACKGROUND: Vancomycin variable enterococci (VVE) are van-positive isolates with a susceptible phenotype that can convert to a resistant phenotype during vancomycin selection. OBJECTIVES: To describe a vancomycin-susceptible vanA-PCR positive ST203 VVE Enterococcus faecium isolate (VVESwe-S) from a liver transplantation patient in Sweden which reverted to resistant (VVESwe-R) during in vitro vancomycin exposure. METHODS: WGS analysis revealed the genetic differences between the isolates. Expression of the van-operon was investigated by qPCR. Fitness and stability of the revertant were investigated by growth measurements, competition and serial transfer. RESULTS: The VVESwe-R isolate gained high-level vancomycin (MIC >256 mg/L) and teicoplanin resistance (MIC = 8 mg/L). VVESwe-S has a 5'-truncated vanR activator sequence and the VVESwe-R has in addition acquired a 44 bp deletion upstream of vanHAX in a region containing alternative putative constitutive promoters. In VVESwe-R the vanHAX-operon is constitutively expressed at a level comparable to the non-induced prototype E. faecium BM4147 strain. The vanHAX operon of VVESwe is located on an Inc18-like plasmid, which has a 3-4-fold higher copy number in VVESwe-R compared with VVESwe-S. Resistance has a low fitness cost and the vancomycin MIC of VVESwe-R decreased during in vitro serial culture without selection. The reduction in MIC was associated with a decreased vanA-plasmid copy number. CONCLUSIONS: Our data support a mechanism by which vancomycin-susceptible VVE strains may revert to a resistant phenotype through the use of an alternative, constitutive, vanR-activator-independent promoter and a vanA-plasmid copy number increase.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , DNA Copy Number Variations , Enterococcus faecium/genetics , Glycopeptides , Humans , Microbial Sensitivity Tests , Plasmids/genetics , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...