Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 126(48): 9097-9107, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36445948

ABSTRACT

In the present study, 2-propanol pyrolysis experiments were conducted in a rapid compression facility for a range of temperatures from 965 to 1193 K, pressures from 4.4 to 10.0 atm conditions, and times ranging from 2 to 47 ms after end-of-compression. Mixtures were composed of 2-propanol, nitrogen, and argon with the 2-propanol concentration held constant at 1.5% by mole fraction. The production of seven stable intermediate species (methane, acetylene, ethene, ethane, acetaldehyde, propene, and acetone) were measured using fast-gas sampling and gas chromatography. The high concentrations of propene observed experimentally indicated thermal decomposition of 2-propanol via dehydration was significant at all conditions studied. The observation of the simultaneous presence of methane and acetone indicated H atom abstraction from 2-propanol by H and CH3 radicals was also significant at all conditions. The relative concentrations of methane and acetone indicated an increase in the 2-propanol + CH3 channel at higher temperature. The experimental data showed negligible sensitivity to over a factor-of-two increase in pressure, indicating pressure-dependent reactions, like the thermal decomposition of 2-propanol via dehydration, were in the high-pressure limit. The experimental results were compared with model predictions made using a recently developed kinetic mechanism for C3-C4 alcohols, and the results showed generally good agreement. The most significant discrepancies were for 2-propanol consumption at the highest temperature condition (T = 1193 K), where 2-propanol consumption was predicted as much higher by the model (by more than an order of magnitude) compared with the experimental results, and at the lowest temperature (T = 965 K), ethane production was predicted as much lower (by more than an order of magnitude) compared with the experimental results.

2.
J Phys Chem A ; 120(38): 7408-18, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27580251

ABSTRACT

Ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol-air mixtures at pressures of ∼3-10 atm. Temperatures (880-1150 K) were controlled by varying buffer gas composition (Ar, N2, CO2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimental measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.

3.
J Phys Chem A ; 119(28): 7695-703, 2015 Jul 16.
Article in English | MEDLINE | ID: mdl-25837302

ABSTRACT

Chemical structure and bond location are well-known to impact combustion reactivity. The current work presents new experimental autoignition and speciation data on the three trans-hexene isomers (1-hexene, trans-2-hexene, and trans-3-hexene), which describe the effects of the location of the carbon-carbon double bond. Experiments were conducted with the University of Michigan rapid compression facility to determine ignition delay times from pressure time histories. Stoichiometric (ϕ = 1.0) mixtures at dilution levels of buffer gas:O2 = 7.5 (mole basis) were investigated at an average pressure of 11 atm and temperatures from 837 to 1086 K. Fast gas sampling and gas chromatography were also used to quantitatively measure 13 stable intermediate species formed during the ignition delay period of each isomer at a temperature of ∼900 K. The measured ignition delay times and species measurements were in good agreement with previous experimental studies at overlapping conditions. The results were modeled using a gasoline surrogate reaction mechanism from Lawrence Livermore National Laboratory, which contains a submechanism for the trans-hexene isomers. The model predictions captured the overall autoignition characteristics of the hexene isomers well (within a factor of 2), as well as the time histories of several of the intermediate species (e.g., propene). However, there were discrepancies between the model predictions and the experimental data for some species, particularly for the 3-hexene isomer.

4.
J Phys Chem A ; 116(51): 12406-21, 2012 Dec 27.
Article in English | MEDLINE | ID: mdl-23206273

ABSTRACT

High-speed gas sampling experiments to measure the intermediate products formed during fuel decomposition remain challenging yet important experimental objectives. This article presents new speciation data on two important fuel reference compounds, n-heptane and n-butanol, at practical thermodynamic conditions of 700 K and 9 atm, for stoichiometric fuel-to-oxygen ratios and a dilution of 5.64 (molar ratio of inert gases to O(2)), and at two blend ratios, 80%-20% and 50%-50% by mole of n-heptane and n-butanol, respectively. When compared against 100% n-heptane ignition results, the experimental data show that n-butanol slows the reactivity of n-heptane. In addition, speciation results of n-butanol concentrations show that n-heptane causes n-butanol to react at temperatures where n-butanol in isolation would not be considered reactive. The chemical kinetic mechanism developed for this work accurately predicts the trends observed for species such as carbon monoxide, methane, propane, 1-butene, and others. However, the mechanism predicts a higher amount of n-heptane consumed at the first stage of ignition compared to the experimental data. Consequently, many of the species concentration predictions show a sharp rise at the first stage of ignition, a trend that is not observed experimentally. An important discovery is that the presence of n-butanol reduces the measured concentrations of the large linear alkenes, including heptenes, hexenes, and pentenes, showing that the addition of n-butanol affects the fundamental chemical pathways of n-heptane during ignition.


Subject(s)
Butanols/chemistry , Heptanes/chemistry , Biofuels , Gases/chemistry , Kinetics , Models, Chemical
5.
J Phys Chem A ; 115(19): 4909-21, 2011 May 19.
Article in English | MEDLINE | ID: mdl-21513318

ABSTRACT

Direct measurements of intermediates of ignition are challenging experimental objectives, yet such measurements are critical for understanding fuel decomposition and oxidation pathways. This work presents experimental results, obtained using the University of Michigan Rapid Compression Facility, of ignition delay times and intermediates formed during the ignition of n-butanol. Ignition delay times for stoichiometric n-butanol/O(2) mixtures with an inert/O(2) ratio of 5.64 were measured over a temperature range of 920-1040 K and a pressure range of 2.86-3.35 atm and were compared to those predicted by the recent reaction mechanism developed by Black et al. (Combust. Flame 2010, 157, 363-373). There is excellent agreement between the experimental results and model predictions for ignition delay time, within 20% over the entire temperature range tested. Further, high-speed gas sampling and gas chromatography techniques were used to acquire and analyze gas samples of intermediate species during the ignition delay of stoichiometric n-butanol/O(2) (χ(n-but) = 0.025, χ(O(2)) = 0.147, χ(N(2)) = 0.541, χ(Ar) = 0.288) mixtures at P = 3.25 atm and T = 975 K. Quantitative measurements of mole fraction time histories of methane, carbon monoxide, ethene, propene, acetaldehyde, n-butyraldehyde, 1-butene and n-butanol were compared with model predictions using the Black et al. mechanism. In general, the predicted trends for species concentrations are consistent with measurements. Sensitivity analyses and rate of production analyses were used to identify reactions important for predicting ignition delay time and the intermediate species time histories. Modifications to the mechanism by Black et al. were explored based on recent contributions to the literature on the rate constant for the key reaction, n-butanol+OH. The results improve the model agreement with some species; however, the comparison also indicates some reaction pathways, particularly those important to ethene formation and removal, are not well captured.


Subject(s)
1-Butanol/chemistry , Alkenes/chemical synthesis , Alkenes/chemistry , Kinetics , Oxygen/chemistry , Pressure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...