Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Polym Mater ; 4(7): 5173-5179, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35846780

ABSTRACT

Monitoring the performance of polymer-functionalized surfaces that aim at removing and inactivating viruses is typically labor-intensive and time-consuming. This hampers the development and optimization of such surfaces. Here we present experiments of low complexity that can be used to characterize and quantify the antiviral properties of polymer-functionalized surfaces. We showcase our approach on polyethylenimine (PEI)-coated poly(ether sulfone) (PES) microfiltration membranes. We use a fluorescently labeled model virus to quantify both virus removal and inactivation. We directly quantify the log removal of intact viruses by this membrane using single particle counting. Additionally, we exploit the change in photophysical properties upon disassembly of the virus to show that viruses are inactivated by the PEI coating. Although only a small fraction of intact viruses can pass the membrane, a considerable fraction of inactivated, disassembled viruses are found in the filtrate. Fluorescence microscopy experiments show that most of the viruses left behind on the microfiltration membrane are in the inactivated, disassembled state. Combined, our fluorescence microscopy and spectroscopy experiments show that not only does the model virus adsorb to the PEI coating on the membrane but also the interaction with PEI results in the disassembly of the virus capsid.

2.
Methods Appl Fluoresc ; 9(2): 025001, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33480360

ABSTRACT

In health and environmental research, it is often necessary to quantify the concentrations of single (bio) nanoparticles present at very low concentrations. Suitable quantification approaches that rely on counting and tracking of single fluorescently labelled (bio) nanoparticles are often challenging since fluorophore self-quenching limits the maximum particle brightness. Here we study how the number of labels per nanoparticle influences the total brightness of fluorescently labelled cowpea chlorotic mottle virus (CCMV). We analyze in detail the photophysical interplay between the fluorophores on the virus particles. We deduce that the formation of dark aggregates and energy transfer towards these aggregates limits the total particle brightness that can be achieved. We show that by carefully selecting the number of fluorescent labels per CCMV, and thus minimizing the negative effects on particle brightness, it is possible to quantify fluorescently labelled CCMV concentrations down to fM concentrations in single particle counting experiments.


Subject(s)
Bromovirus/isolation & purification , Fluorescent Dyes/chemistry , Viral Load/methods , Bromovirus/chemistry , Fluorescence
3.
Analyst ; 145(5): 1629-1635, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31958108

ABSTRACT

Plasma microcontact patterning (PµCP) and replica molding were combined to make PDMS/glass microfluidic devices with ß-cyclodextrin (ß-CD) patterns attached covalently on the glass surface inside microchannels. The supramolecular reactivity, reusability and association constant of ß-CD with Cy5-Ad2 was tested by analyzing signal-to-noise ratios of patterns vs. spacing with fluorescence microscopy.

4.
Sensors (Basel) ; 19(20)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614587

ABSTRACT

Currently available groundwater flow prediction tools and methods are limited by insufficient spatial resolution of subsurface data and the unknown local heterogeneity. In this field study, fiber Bragg grating (FBG) sensors were installed in an extraction well field to investigate its potential to measure groundwater flow velocity. Reference in-situ pore pressure and temperature measurements were used to identify possible sources of FBG responses. FBG strain sensors were able to detect soil consolidation caused by groundwater extraction from 250 m distance. The results show that FBG responses were influenced by interface friction between soil and FBG packaging. FBG packaging slipped in soil and the effect was more pronounced during higher groundwater flow around a nearby well. These FBG fibers could be applied for indirect flow monitoring that does not require any tracer and provide real-time and long-term data during regular operation of extraction wells.

5.
ACS Appl Mater Interfaces ; 11(39): 36221-36231, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31487143

ABSTRACT

Species-specific isolation of microsized entities such as microplastics and resistant bacteria from waste streams is becoming a growing environmental challenge. By studying the on-flow immobilization of micron-sized polystyrene particles onto functionalized silica surfaces, we ascertain if supramolecular host-guest chemistry in aqueous solutions can provide an alternative technology for water purification. Polystyrene particles were modified with different degrees of adamantane (guest) molecules, and silica surfaces were patterned with ß-cyclodextrin (ß-CD, host) through microcontact printing (µCP). The latter was exposed to solutions of these particles flowing at different speeds, allowing us to study the effect of flow rate and multivalency on particle binding to the surface. The obtained binding profile was correlated with Comsol simulations. We also observed that particle binding is directly aligned with particle's ability to form host-guest interactions with the ß-CD-patterned surface, as particle binding to the functionalized glass surface increased with higher adamantane load on the polystyrene particle surface. Because of the noncovalent character of these interactions, immobilization is reversible and modified ß-CD surfaces can be recycled, which provides a positive outlook for their incorporation in water purification systems.


Subject(s)
Microspheres , Polystyrenes/chemistry , Silicon Dioxide/chemistry , beta-Cyclodextrins/chemistry
6.
Langmuir ; 34(7): 2455-2463, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29345950

ABSTRACT

In this paper, we investigate electroconvective ion transport at cation exchange membranes with different geometry square-wave structures (line undulations) experimentally and numerically. Electroconvective microvortices are induced by strong concentration polarization once a threshold potential difference is applied. The applied potential required to start and sustain electroconvection is strongly affected by the geometry of the membrane. A reduction in the resistance of approximately 50% can be obtained when the structure size is similar to the mixing layer (ML) thickness, resulting in confined vortices with less lateral motion compared to the case of flat membranes. From electrical, flow, and concentration measurements, ion migration, advection, and diffusion are quantified, respectively. Advection and migration are dominant in the vortex ML, whereas diffusion and migration are dominant in the stagnant diffusion layer. Numerical simulations, based on Poisson-Nernst-Planck and Navier-Stokes equations, show similar ion transport and flow characteristics, highlighting the importance of membrane topology on the resulting electrokinetic and electrohydrodynamic behavior.

7.
Article in English | MEDLINE | ID: mdl-26465416

ABSTRACT

We investigate the coupled dynamics of the local hydrodynamics and global electric response of an electrodialysis system, which consists of an electrolyte solution adjacent to a charge selective membrane under electric forcing. Under a dc electric current, counterions transport through the charged membrane while the passage of co-ions is restricted, thereby developing ion concentration polarization (ICP) or gradients. At sufficiently large currents, simultaneous measurements of voltage drop and flow field reveal several distinct dynamic regimes. Initially, the electrodialysis system displays a steady Ohmic voltage difference (ΔV_{ohm}), followed by a constant voltage jump (ΔV_{c}). Immediately after this voltage increase, microvortices set in and grow both in size and speed with time. After this growth, the resultant voltage levels off around a fixed value. The average vortex size and speed stabilize as well, while the individual vortices become unsteady and dynamic. These quantitative results reveal that microvortices set in with an excess voltage drop (above ΔV_{ohm}+ΔV_{c}) and sustain an approximately constant electrical conductivity, destroying the initial ICP with significantly low viscous dissipation.

8.
Langmuir ; 22(26): 10904-8, 2006 Dec 19.
Article in English | MEDLINE | ID: mdl-17154561

ABSTRACT

We present a new and simple method to produce superhydrophobic surfaces with ultralow hysteresis. The method involves surface modification of SU-8 using an excimer laser treatment. The modified surface is coated with a hydrophobic plasma-polymerized hexafluoropropene layer. The advancing and receding water contact angles were measured to be approximately 165 degrees . The achieved water contact angle hysteresis was below the measurement limit. This low hysteresis can be ascribed to nanoscale debris generated during the excimer laser process.

SELECTION OF CITATIONS
SEARCH DETAIL
...