Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(15): 4097-4101, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37706722

ABSTRACT

Terahertz time-domain spectroscopy (THz-TDS) is a powerful technique that enables the characterization of a large range of bulk materials, devices, and products. Although this technique has been increasingly used in research and industry, the standard THz-TDS configuration relying on the use of a near-infrared (NIR) laser source remains experimentally complex and relatively costly, impeding its availability to those without the expertise to build a high-performance setup based on nonlinear optics or without the financial means to acquire a commercial unit. Broadband THz-TDS systems require an even larger financial investment, primarily because the generation and detection of spectral components exceeding 3 THz typically need an ultrafast NIR source delivering sub-100-fs pulses. Such an ultrafast source can be bulky and cost upwards of $100,000. Here, we present a broadband, compact, and portable THz-TDS system comprising three modules that allow for the implementation of a single low-cost ultrafast laser, hence significantly decreasing the overall cost of the system. In the first module, the output laser pulses are spectrally broadened through nonlinear propagation in a polarization-maintaining optical fiber and then temporally compressed to achieve a higher peak power. The other two modules utilize thick nonlinear crystals with periodically patterned surfaces that diffract NIR pulses and optimize the efficiency of THz generation and detection processes by enabling a noncollinear beam geometry. Phase-matching conditions in the nonlinear crystals are controlled by the period of the gratings to gain access to a large spectral THz bandwidth. The whole system, combining these three modules, provides access to a THz spectrum peaking at 3.5 THz and extending beyond 6 THz with a maximum dynamic range of 50 dB for time-resolved spectroscopy applications. We demonstrate the functionality of this configuration by performing THz spectroscopy measurements of water vapor contained within a closed cell. Our compact system design paves the way towards a high-performance, yet cost-effective, THz-TDS system that can be readily used in academia and industry.

2.
Opt Lett ; 41(8): 1797-800, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27082348

ABSTRACT

Distributed feedback (DFB) fiber Bragg gratings (FBG) are widely used as narrow-band filters and single-mode cavities for lasers. Recently, a nonlinear generation has been shown in 10-20 cm DFB gratings in a highly nonlinear fiber. First, we show in this Letter a novel fabrication technique of ultra-long DFBs in a standard fiber (SMF-28). Second, we demonstrate nonlinear generation in such gratings. A particular inscription technique was used to fabricate all-in-phase ultra-long FBG and to implement reproducible phase shift to form a DFB mode. We demonstrate stimulated Brillouin scattering (SBS) emission from this DFB mode and characterize the resulting laser. It seems that such a SBS based DFB laser stabilizes a pump's jittering and reduces its linewidth.

3.
Opt Express ; 23(12): 16084-95, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193582

ABSTRACT

The penalty of extending the cavity length of a laser diode when seeking a linewidth reduction is normally revealed by poor side mode suppression, which prevents the laser from operating purely in a single mode of the external cavity. A hybrid laser, based on a C-band semiconductor optical amplifier combined with a long erbium doped fiber external cavity, is carefully engineered to operate with high spectral purity and outstanding stability. For the first time, a side-mode suppression ratio of ≥42 dB, measured at a resolution of 1.16 pm (149 MHz) at all intra-cavity powers above the lasing threshold, is reported. The output power at the peak lasing wavelength is 13.3 dBm. Also, the ability to lock such a hybrid laser to a particular external-cavity mode is realized for the first time. Excluding the effect of mechanical and thermal drifts on the cavity length, the long-term frequency stability is demonstrated to be within ± 11 Hz while the long-term linewidth is 2.26 kHz, measured using the self-beating technique under free running conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...