Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS J ; 272(21): 5454-63, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16262686

ABSTRACT

We isolated a cholesterol-enriched membrane subpopulation from the so-called lipid raft fractions of Jurkat T-cells by taking advantage of its selective binding to a cholesterol-binding probe, BCtheta. The BCtheta-bound membrane subpopulation has a much higher cholesterol/phospholipid (C/P) molar ratio (approximately 1.0) than the BCtheta-unbound population in raft fractions (approximately 0.3). It contains not only the raft markers GM1 and flotillin, but also some T-cell receptor (TCR) signalling molecules, including Lck, Fyn and LAT. In addition, Csk and PAG, inhibitory molecules of the TCR signalling cascade, are also contained in the BCtheta-bound membranes. On the other hand, CD3epsilon, CD3zeta and Zap70 are localized in the BCtheta-unbound membranes, segregated from other TCR signalling molecules under nonstimulated conditions. However, upon stimulation of TCR, portions of CD3epsilon, CD3zeta and Zap70 are recruited to the BCtheta-bound membranes. The Triton X-100 concentration used for lipid raft preparation affects neither the C/P ratio nor protein composition of the BCtheta-bound membranes. These results show that our method is useful for isolating a particular cholesterol-rich membrane domain of T-cells, which could be a core domain controlling the TCR signalling cascade.


Subject(s)
Cholesterol/metabolism , Signal Transduction , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Antibodies/immunology , Biomarkers , CD3 Complex/immunology , CD3 Complex/metabolism , Humans , Jurkat Cells , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Membrane Microdomains/ultrastructure , Microscopy, Immunoelectron , Octoxynol/pharmacology , Protein Binding/drug effects , Signal Transduction/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/ultrastructure , ZAP-70 Protein-Tyrosine Kinase/metabolism
2.
Anaerobe ; 10(2): 125-34, 2004 Apr.
Article in English | MEDLINE | ID: mdl-16701509

ABSTRACT

Gaining an understanding of the structural and functional roles of cholesterol in membrane lipid rafts is a critical issue in studies on cellular signaling and because of the possible involvement of lipid rafts in various diseases. We have focused on the potential of perfringolysin O (theta-toxin), a cholesterol-binding cytolysin produced by Clostridium perfringens, as a probe for studies on membrane cholesterol. We prepared a protease-nicked and biotinylated derivative of perfringolysin O (BCtheta) that binds selectively to cholesterol in cholesterol-rich microdomains of cell membranes without causing membrane lesions. Since the domains fulfill the criteria of lipid rafts, BCtheta can be used to detect cholesterol-rich lipid rafts. This is in marked contrast to filipin, another cholesterol-binding reagent, which binds indiscriminately to cell cholesterol. Using BCtheta, we are now searching for molecules that localize specifically in cholesterol-rich lipid rafts. Recently, we demonstrated that the C-terminal domain of perfringolysin O, domain 4 (D4), possesses the same binding characteristics as BCtheta. BIAcore analysis showed that D4 binds specifically to cholesterol with the same binding affinity as the full-size toxin. Cell-bound D4 is recovered predominantly from detergent-insoluble, low-density membrane fractions where raft markers, such as cholesterol, flotillin and Src family kinases, are enriched, indicating that D4 also binds selectively to lipid rafts. Furthermore, a green fluorescent protein-D4 fusion protein (GFP-D4) was revealed to be useful for real-time monitoring of cholesterol in lipid rafts in the plasma membrane. In addition, the expression of GFP-D4 in the cytoplasm might allow the investigations of intracellular trafficking of lipid rafts. The simultaneous visualization of lipid rafts in plasma membranes and inside cells might help in gaining a total understanding of the dynamic behavior of lipid rafts.

SELECTION OF CITATIONS
SEARCH DETAIL
...