Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(28): e2219543120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37406092

ABSTRACT

Although HIV-1 Gag is known to drive viral assembly and budding, the precise mechanisms by which the lipid composition of the plasma membrane is remodeled during assembly are incompletely understood. Here, we provide evidence that the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) interacts with HIV-1 Gag and through the hydrolysis of sphingomyelin creates ceramide that is necessary for proper formation of the viral envelope and viral maturation. Inhibition or depletion of nSMase2 resulted in the production of noninfectious HIV-1 virions with incomplete Gag lattices lacking condensed conical cores. Inhibition of nSMase2 in HIV-1-infected humanized mouse models with a potent and selective inhibitor of nSMase2 termed PDDC [phenyl(R)-(1-(3-(3,4-dimethoxyphenyl)-2, 6-dimethylimidazo[1,2-b]pyridazin-8-yl) pyrrolidin-3-yl)-carbamate] produced a linear reduction in levels of HIV-1 in plasma. If undetectable plasma levels of HIV-1 were achieved with PDDC treatment, viral rebound did not occur for up to 4 wk when PDDC was discontinued. In vivo and tissue culture results suggest that PDDC selectively kills cells with actively replicating HIV-1. Collectively, this work demonstrates that nSMase2 is a critical regulator of HIV-1 replication and suggests that nSMase2 could be an important therapeutic target with the potential to kill HIV-1-infected cells.


Subject(s)
HIV-1 , Sphingomyelin Phosphodiesterase , Mice , Animals , Sphingomyelin Phosphodiesterase/metabolism , HIV-1/metabolism , Sphingomyelins/metabolism , Cell Membrane/metabolism
2.
Proc Natl Acad Sci U S A ; 120(28): e2219475120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37406093

ABSTRACT

HIV-1 assembly occurs at the inner leaflet of the plasma membrane (PM) in highly ordered membrane microdomains. The size and stability of membrane microdomains is regulated by activity of the sphingomyelin hydrolase neutral sphingomyelinase 2 (nSMase2) that is localized primarily to the inner leaflet of the PM. In this study, we demonstrate that pharmacological inhibition or depletion of nSMase2 in HIV-1-producer cells results in a block in the processing of the major viral structural polyprotein Gag and the production of morphologically aberrant, immature HIV-1 particles with severely impaired infectivity. We find that disruption of nSMase2 also severely inhibits the maturation and infectivity of other primate lentiviruses HIV-2 and simian immunodeficiency virus, has a modest or no effect on nonprimate lentiviruses equine infectious anemia virus and feline immunodeficiency virus, and has no effect on the gammaretrovirus murine leukemia virus. These studies demonstrate a key role for nSMase2 in HIV-1 particle morphogenesis and maturation.


Subject(s)
HIV-1 , Infectious Anemia Virus, Equine , Animals , Cats , Horses , Mice , HIV-1/physiology , Sphingomyelin Phosphodiesterase/metabolism , Virus Assembly , Lentivirus
3.
Sci Signal ; 14(700): eabc7611, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34520227

ABSTRACT

The SERINC (serine incorporator) proteins are host restriction factors that inhibit infection by HIV through their incorporation into virions. Here, we found that SERINC3 and SERINC5 exhibited additional antiviral activities by enhancing the expression of genes encoding type I interferons (IFNs) and nuclear factor κB (NF-κB) signaling. SERINC5 interacted with the outer mitochondrial membrane protein MAVS (mitochondrial antiviral signaling) and the E3 ubiquitin ligase and adaptor protein TRAF6, resulting in MAVS aggregation and polyubiquitylation of TRAF6. Knockdown of SERINC5 in target cells increased single-round HIV-1 infectivity, as well as infection by recombinant vesicular stomatitis virus (rVSV) bearing VSV-G or Ebola virus (EBOV) glycoproteins. Infection by an endemic Asian strain of Zika virus (ZIKV), FSS13025, was also enhanced by SERINC5 knockdown, suggesting that SERINC5 has direct antiviral activities in host cells in addition to the indirect inhibition mediated by its incorporation into virions. Further experiments suggested that the antiviral activity of SERINC5 was type I IFN­dependent. Together, these results highlight a previously uncharacterized function of SERINC proteins in promoting NF-κB inflammatory signaling and type I IFN production, thus contributing to its antiviral activities.


Subject(s)
Antiviral Agents , Signal Transduction
4.
mBio ; 12(2)2021 03 16.
Article in English | MEDLINE | ID: mdl-33727347

ABSTRACT

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP, and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.IMPORTANCE Viral envelope glycoproteins are an important structural component on the surfaces of enveloped viruses that direct virus binding and entry and also serve as targets for the host adaptive immune response. In this study, we investigate the mechanism of action of the MARCH family of cellular proteins that disrupt the trafficking and virion incorporation of viral glycoproteins across several virus families. This research provides novel insights into how host cell factors antagonize viral replication, perhaps opening new avenues for therapeutic intervention in the replication of a diverse group of highly pathogenic enveloped viruses.


Subject(s)
Membrane Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Envelope Proteins/metabolism , Amino Acid Sequence , Cells, Cultured , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Interferons/pharmacology , Intracellular Space/metabolism , Membrane Proteins/genetics , Mutation , RNA Viruses/classification , RNA Viruses/metabolism , Species Specificity , Ubiquitin-Protein Ligases/genetics , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Virion/metabolism , Virus Replication
5.
bioRxiv ; 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33532773

ABSTRACT

An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell-surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.

6.
bioRxiv ; 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32511349

ABSTRACT

P-selectin glycoprotein ligand-1 (PSGL-1) is a cell surface glycoprotein that binds to P-, E-, and L-selectins to mediate the tethering and rolling of immune cells on the surface of the endothelium for cell migration into inflamed tissues. PSGL-1 has been identified as an interferon-γ (INF-γ)-regulated factor that restricts HIV-1 infectivity, and has recently been found to possess broad-spectrum antiviral activities. Here we report that the expression of PSGL-1 in virus-producing cells impairs the incorporation of SARS-CoV and SARS-CoV-2 spike (S) glycoproteins into pseudovirions and blocks virus attachment and infection of target cells. These findings suggest that PSGL-1 may potentially inhibit coronavirus replication in PSGL-1+ cells.

7.
J Biol Chem ; 295(21): 7327-7340, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32291285

ABSTRACT

Host proteins with antiviral activity have evolved as first-line defenses to suppress viral replication. The HIV-1 accessory protein viral protein U (Vpu) enhances release of the virus from host cells by down-regulating the cell-surface expression of the host restriction factor tetherin. However, the exact mechanism of Vpu-mediated suppression of antiviral host responses is unclear. To further understand the role of host proteins in Vpu's function, here we carried out yeast two-hybrid screening and identified the V0 subunit C of vacuolar ATPase (ATP6V0C) as a Vpu-binding protein. To examine the role of ATP6V0C in Vpu-mediated tetherin degradation and HIV-1 release, we knocked down ATP6V0C expression in HeLa cells and observed that ATP6V0C depletion impairs Vpu-mediated tetherin degradation, resulting in defective HIV-1 release. We also observed that ATP6V0C overexpression stabilizes tetherin expression. This stabilization effect was specific to ATP6V0C, as overexpression of another subunit of the vacuolar ATPase, ATP6V0C″, had no effect on tetherin expression. ATP6V0C overexpression did not stabilize CD4, another target of Vpu-mediated degradation. Immunofluorescence localization experiments revealed that the ATP6V0C-stabilized tetherin is sequestered in a CD63- and lysosome-associated membrane protein 1 (LAMP1)-positive intracellular compartment. These results indicate that the Vpu-interacting protein ATP6V0C plays a role in down-regulating cell-surface expression of tetherin and thereby contributes to HIV-1 assembly and release.


Subject(s)
Antigens, CD/biosynthesis , Down-Regulation , HIV-1/metabolism , Human Immunodeficiency Virus Proteins/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Virus Release , Antigens, CD/genetics , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/genetics , HEK293 Cells , HIV-1/genetics , HeLa Cells , Human Immunodeficiency Virus Proteins/genetics , Humans , Vacuolar Proton-Translocating ATPases/genetics , Viral Regulatory and Accessory Proteins/genetics
8.
Proc Natl Acad Sci U S A ; 117(17): 9537-9545, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32273392

ABSTRACT

P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric, mucin-like, 120-kDa glycoprotein that binds to P-, E-, and L-selectins. PSGL-1 is expressed primarily on the surface of lymphoid and myeloid cells and is up-regulated during inflammation to mediate leukocyte tethering and rolling on the surface of endothelium for migration into inflamed tissues. Although it has been reported that PSGL-1 expression inhibits HIV-1 replication, the mechanism of PSGL-1-mediated anti-HIV activity remains to be elucidated. Here we report that PSGL-1 in virions blocks the infectivity of HIV-1 particles by preventing the binding of particles to target cells. This inhibitory activity is independent of the viral glycoprotein present on the virus particle; the binding of particles bearing the HIV-1 envelope glycoprotein or vesicular stomatitis virus G glycoprotein or even lacking a viral glycoprotein is impaired by PSGL-1. Mapping studies show that the extracellular N-terminal domain of PSGL-1 is necessary for its anti-HIV-1 activity, and that the PSGL-1 cytoplasmic tail contributes to inhibition. In addition, we demonstrate that the PSGL-1-related monomeric E-selectin-binding glycoprotein CD43 also effectively blocks HIV-1 infectivity. HIV-1 infection, or expression of either Vpu or Nef, down-regulates PSGL-1 from the cell surface; expression of Vpu appears to be primarily responsible for enabling the virus to partially escape PSGL-1-mediated restriction. Finally, we show that PSGL-1 inhibits the infectivity of other viruses, such as murine leukemia virus and influenza A virus. These findings demonstrate that PSGL-1 is a broad-spectrum antiviral host factor with a unique mechanism of action.


Subject(s)
HIV-1/physiology , Membrane Glycoproteins/metabolism , Virus Attachment , Blood Buffy Coat , CD4-Positive T-Lymphocytes , Gene Expression Regulation , HeLa Cells , Humans
9.
Viruses ; 13(1)2020 12 30.
Article in English | MEDLINE | ID: mdl-33396594

ABSTRACT

P-selectin glycoprotein ligand-1 (PSGL-1) is a cell surface glycoprotein that binds to P-, E-, and L-selectins to mediate the tethering and rolling of immune cells on the surface of the endothelium for cell migration into inflamed tissues. PSGL-1 has been identified as an interferon-γ (INF-γ)-regulated factor that restricts HIV-1 infectivity, and has recently been found to possess broad-spectrum antiviral activities. Here we report that the expression of PSGL-1 in virus-producing cells impairs the incorporation of SARS-CoV and SARS-CoV-2 spike (S) glycoproteins into pseudovirions and blocks pseudovirus attachment and infection of target cells. These findings suggest that PSGL-1 may potentially inhibit coronavirus replication in PSGL-1+ cells.


Subject(s)
COVID-19/virology , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/metabolism , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Virion , Animals , Cell Line , HEK293 Cells , HIV-1/drug effects , Humans , Interferon-gamma , Virus Attachment/drug effects , Virus Internalization/drug effects
10.
Retrovirology ; 16(1): 18, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31269971

ABSTRACT

BACKGROUND: Nef is a multifunctional accessory protein encoded by HIV-1, HIV-2 and SIV that plays critical roles in viral pathogenesis, contributing to viral replication, assembly, budding, infectivity and immune evasion, through engagement of various host cell pathways. RESULTS: To gain a better understanding of the role of host proteins in the functions of Nef, we carried out tandem affinity purification-mass spectrometry analysis, and identified over 70 HIV-1 Nef-interacting proteins, including the autophagy-related 9A (ATG9A) protein. ATG9A is a transmembrane component of the machinery for autophagy, a catabolic process in which cytoplasmic components are degraded in lysosomal compartments. Pulldown experiments demonstrated that ATG9A interacts with Nef from not only HIV-1 and but also SIV (cpz, smm and mac). However, expression of HIV-1 Nef had no effect on the levels and localization of ATG9A, and on autophagy, in the host cells. To investigate a possible role for ATG9A in virus replication, we knocked out ATG9A in HeLa cervical carcinoma and Jurkat T cells, and analyzed virus release and infectivity. We observed that ATG9A knockout (KO) had no effect on the release of wild-type (WT) or Nef-defective HIV-1 in these cells. However, the infectivity of WT virus produced from ATG9A-KO HeLa and Jurkat cells was reduced by ~ fourfold and eightfold, respectively, relative to virus produced from WT cells. This reduction in infectivity was independent of the interaction of Nef with ATG9A, and was not due to reduced incorporation of the viral envelope (Env) glycoprotein into the virus. The loss of HIV-1 infectivity was rescued by pseudotyping HIV-1 virions with the vesicular stomatitis virus G glycoprotein. CONCLUSIONS: These studies indicate that ATG9A promotes HIV-1 infectivity in an Env-dependent manner. The interaction of Nef with ATG9A, however, is not required for Nef to enhance HIV-1 infectivity. We speculate that ATG9A could promote infectivity by participating in either the removal of a factor that inhibits infectivity or the incorporation of a factor that enhances infectivity of the viral particles. These studies thus identify a novel host cell factor implicated in HIV-1 infectivity, which may be amenable to pharmacologic manipulation for treatment of HIV-1 infection.


Subject(s)
Autophagy-Related Proteins/metabolism , HIV Infections/virology , Host Microbial Interactions , Membrane Proteins/metabolism , Vesicular Transport Proteins/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , Autophagy-Related Proteins/genetics , Gene Knockout Techniques , HeLa Cells , Humans , Jurkat Cells , Membrane Proteins/genetics , Vesicular Transport Proteins/genetics , Virus Replication , nef Gene Products, Human Immunodeficiency Virus/genetics
11.
Proc Natl Acad Sci U S A ; 116(12): 5705-5714, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30842281

ABSTRACT

The T cell Ig and mucin domain (TIM) proteins inhibit release of HIV-1 and other enveloped viruses by interacting with cell- and virion-associated phosphatidylserine (PS). Here, we show that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. TIM-1 more potently inhibits the release of Nef-deficient relative to Nef-expressing HIV-1, and ectopic expression of Nef relieves restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression, but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Notably, Nef mutants defective in modulating membrane protein endocytic trafficking are incapable of antagonizing TIM-mediated inhibition of HIV-1 release. Intriguingly, depletion of SERINC3 or SERINC5 proteins in human peripheral blood mononuclear cells (PBMCs) attenuates TIM-1 restriction of HIV-1 release, in particular that of Nef-deficient viruses. In contrast, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production. Pulse-chase metabolic labeling reveals that the half-life of TIM-1 is extended by SERINC5 from <2 to ∼6 hours, suggesting that SERINC5 stabilizes the expression of TIM-1. Consistent with a role for SERINC protein in potentiating TIM-1 restriction, we find that MLV glycoGag and EIAV S2 proteins, which, like Nef, antagonize SERINC-mediated diminishment of HIV-1 infectivity, also effectively counteract TIM-mediated inhibition of HIV-1 release. Collectively, our work reveals a role of Nef in antagonizing TIM-1 and highlights the complex interplay between Nef and HIV-1 restriction by TIMs and SERINCs.


Subject(s)
HIV Infections/metabolism , Hepatitis A Virus Cellular Receptor 1/physiology , nef Gene Products, Human Immunodeficiency Virus/physiology , Cell Membrane/metabolism , Down-Regulation , HEK293 Cells , HIV Seropositivity , HIV-1/metabolism , HIV-1/pathogenicity , Hepatitis A Virus Cellular Receptor 1/antagonists & inhibitors , Hepatitis A Virus Cellular Receptor 1/metabolism , Host-Pathogen Interactions/physiology , Humans , Leukocytes, Mononuclear/metabolism , Membrane Glycoproteins , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Protein Transport , Receptors, Cell Surface/metabolism , Virion/metabolism , Virus Replication/drug effects , nef Gene Products, Human Immunodeficiency Virus/metabolism
12.
J Cell Commun Signal ; 13(2): 209-224, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30443895

ABSTRACT

Tunneling nanotubes (TNTs) are intercellular structures that allow for the passage of vesicles, organelles, genomic material, pathogenic proteins and pathogens. The unconventional actin molecular motor protein Myosin-X (Myo10) is a known inducer of TNTs in neuronal cells, yet its role in other cell types has not been examined. The Nef HIV-1 accessory protein is critical for HIV-1 pathogenesis and can self-disseminate in culture via TNTs. Understanding its intercellular spreading mechanism could reveal ways to control its damaging effects during HIV-1 infection. Our goal in this study was to characterize the intercellular transport mechanism of Nef from macrophages to T cells. We demonstrate that Nef increases TNTs in a Myo10-dependent manner in macrophages and observed the transfer of Nef via TNTs from macrophages to T cells. To quantify this transfer mechanism, we established an indirect flow cytometry assay. Since Nef expression in T cells down-regulates the surface receptor CD4, we correlated the decrease in CD4 to the transfer of Nef between these cells. Thus, we co-cultured macrophages expressing varying levels of Nef with a T cell line expressing high levels of CD4 and quantified the changes in CD4 surface expression resulting from Nef transfer. We demonstrate that Nef transfer occurs via a cell-to-cell dependent mechanism that directly correlates with the presence of Myo10-dependent TNTs. Thus, we show that Nef can regulate Myo10 expression, thereby inducing TNT formation, resulting in its own transfer from macrophages to T cells. In addition, we demonstrate that up-regulation of Myo10 induced by Nef also occurs in human monocyte derived macrophages during HIV-1 infection.

13.
Viruses ; 10(1)2018 01 05.
Article in English | MEDLINE | ID: mdl-29303997

ABSTRACT

Tetherin is an interferon-inducible antiviral protein that inhibits the release of a broad spectrum of enveloped viruses by retaining virions at the surface of infected cells. While the role of specific tetherin domains in antiviral activity is clearly established, the role of glycosylation in tetherin function is not clear. In this study, we carried out a detailed investigation of this question by using tetherin variants in which one or both sites of N-linked glycosylation were mutated (N65A, N92A, and N65,92A), and chemical inhibitors that prevent glycosylation at specific stages of oligosaccharide were added or modified. The single N-linked glycosylation mutants, N65A and N92A, efficiently inhibited the release of Vpu-defective human immunodeficiency virus type 1 (HIV-1). In contrast, the non-glycosylated double mutant, N65,92A, lost its ability to block HIV-1 release. The inability of the N65,92A mutant to inhibit HIV-1 release is associated with a lack of cell-surface expression. A role for glycosylation in cell-surface tetherin expression is supported by tunicamycin treatment, which inhibits the first step of N-linked glycosylation and impairs both cell-surface expression and antiviral activity. Inhibition of complex-type glycosylation with kifunensine, an inhibitor of the oligosaccharide processing enzyme mannosidase 1, had no effect on either the cell-surface expression or antiviral activity of tetherin. These results demonstrate that high-mannose modification of a single asparagine residue is necessary and sufficient, while complex-type glycosylation is dispensable, for cell-surface tetherin expression and antiviral activity.


Subject(s)
Bone Marrow Stromal Antigen 2/metabolism , HIV Infections/metabolism , HIV Infections/virology , HIV-1/physiology , Mannose/metabolism , Virus Release , Bone Marrow Stromal Antigen 2/genetics , Cell Line , Cell Membrane/metabolism , Gene Expression , Glycosylation , HIV Infections/genetics , Host-Pathogen Interactions/genetics , Humans , Tunicamycin/pharmacology
14.
Sci Rep ; 6: 24934, 2016 04 22.
Article in English | MEDLINE | ID: mdl-27103333

ABSTRACT

The HIV-1 accessory protein Vpu enhances virus release by counteracting the host restriction factor tetherin. To further understand the role of host cell proteins in Vpu function, we carried out yeast two-hybrid screening and identified a previously reported Vpu-interacting host factor, small glutamine-rich tetratricopeptide repeat-containing protein (SGTA). While RNAi-mediated depletion of SGTA did not significantly affect levels of tetherin or virus release efficiency, we observed that overexpression of SGTA inhibited HIV-1 release in a Vpu- and tetherin-independent manner. Overexpression of SGTA in the presence of Vpu, but not in its absence, resulted in a marked stabilization and cytosolic relocalization of a 23-kDa, non-glycosylated tetherin species. Coimmunoprecipitation studies indicated that non-glycosylated tetherin is stabilized through the formation of a ternary SGTA/Vpu/tetherin complex. This accumulation of non-glycosylated tetherin is due to inhibition of its degradation, independent of the ER-associated degradation (ERAD) pathway. Because the SGTA-stabilized tetherin species is partially localized to the cytosol, we propose that overexpression of SGTA in the presence of Vpu blocks the translocation of tetherin across the ER membrane, resulting in cytosolic accumulation of a non-glycosylated tetherin species. Although our results do not provide support for a physiological function of SGTA in HIV-1 replication, they demonstrate that SGTA overexpression regulates tetherin expression and stability, thus providing insights into the function of SGTA in ER translocation and protein degradation.


Subject(s)
Antigens, CD/metabolism , Carrier Proteins/metabolism , Gene Expression Regulation , Human Immunodeficiency Virus Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , GPI-Linked Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Immunoprecipitation , Molecular Chaperones , Protein Interaction Mapping , Two-Hybrid System Techniques
16.
J Virol ; 90(2): 768-79, 2016 01 15.
Article in English | MEDLINE | ID: mdl-26512081

ABSTRACT

UNLABELLED: HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6(Gag)), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6(Gag) significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6(Gag) confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCE: Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of Gag are frequently observed in viruses derived from patients on protease inhibitor (PI) therapy. However, the reason that these duplications arise and their consequences for virus replication remain to be established. In this study, we examined the effect of PTAP duplication on PI resistance in the context of wild-type protease or protease bearing PI resistance mutations. We observe that PTAP duplication markedly enhances resistance to a panel of PIs. Biochemical analysis reveals that the PTAP duplication reverses a Gag processing defect imposed by the PI resistance mutations in the context of PI treatment. The results provide a long-sought explanation for why PTAP duplications arise in PI-treated patients.


Subject(s)
HIV Protease/metabolism , HIV-1/physiology , Virus Release , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/metabolism , Cell Line , Drug Resistance, Viral , HIV Protease/genetics , HIV Protease Inhibitors/pharmacology , HIV-1/genetics , Humans , Protein Processing, Post-Translational , gag Gene Products, Human Immunodeficiency Virus/genetics
17.
Curr Top Med Chem ; 16(12): 1343-9, 2016.
Article in English | MEDLINE | ID: mdl-26459806

ABSTRACT

The biomedical intervention that has had a major impact on the natural history of HIV and on the global HIV epidemic is antiretroviral therapy (ART). However, the emergence of drug-resistant HIV, an inevitable consequence of increasing use of antiretroviral drugs, poses a major threat to ART success. At the turn of this century, access to life-saving ART was accelerated in low and middle-income countries with the Millennium Development Goal of 15 million individuals receiving ART by 2015 expected to be achieved. However, ART access needs to continue to expand to help bring HIV under control by 2030. The standard of care for people living with HIV in resource- limited settings differs dramatically compared to high-income countries, and not unexpectedly, ART rollout in these settings has resulted in an increase in acquired and transmitted drug resistance. Also of concern, the same drug classes used for ART have been approved or are being progressed for HIV prevention and drug resistance could mitigate their effectiveness for treatment and prevention. In the absence of an effective HIV vaccine and cure, it is imperative that the antiretroviral drug pipeline contains new classes of HIV inhibitors that are active against circulating drug-resistant strains. Studies to advance our fundamental understanding of HIV replication needs to continue, including the interplay between virus and host cell factors, to identify and characterize new drug targets for chemotherapeutic intervention.


Subject(s)
Antiviral Agents/classification , Antiviral Agents/pharmacology , HIV Infections/drug therapy , HIV Infections/prevention & control , HIV/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , HIV/growth & development , HIV Infections/virology , Humans , Virus Replication/drug effects
18.
PLoS One ; 9(10): e111628, 2014.
Article in English | MEDLINE | ID: mdl-25360760

ABSTRACT

The interferon-inducible cellular protein tetherin (CD317/BST-2) inhibits the release of a broad range of enveloped viruses. The HIV-1 accessory protein Vpu enhances virus particle release by counteracting this host restriction factor. While the antagonism of human tetherin by Vpu has been associated with both proteasomal and lysosomal degradation, the link between Vpu-mediated tetherin degradation and the ability of Vpu to counteract the antiviral activity of tetherin remains poorly understood. Here, we show that human tetherin is expressed at low levels in African green monkey kidney (COS) cells. However, Vpu markedly increases tetherin expression in this cell line, apparently by sequestering it in an internal compartment that bears lysosomal markers. This stabilization of tetherin by Vpu requires the transmembrane sequence of human tetherin. Although Vpu stabilizes human tetherin in COS cells, it still counteracts the ability of tetherin to suppress virus release. The enhancement of virus release by Vpu in COS cells is associated with a modest reduction in cell-surface tetherin expression, even though the overall expression of tetherin is higher in the presence of Vpu. This study demonstrates that COS cells provide a model system in which Vpu-mediated enhancement of HIV-1 release is uncoupled from Vpu-mediated tetherin degradation.


Subject(s)
Antigens, CD/metabolism , Antiviral Agents/metabolism , Human Immunodeficiency Virus Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Animals , Antigens, CD/chemistry , Biomarkers/metabolism , COS Cells , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlorocebus aethiops , Down-Regulation/drug effects , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Humans , Intracellular Space/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Macaca mulatta , Mice , Proteasome Inhibitors/pharmacology , Protein Stability/drug effects , Protein Structure, Tertiary , Proteolysis/drug effects
19.
J Biol Chem ; 289(51): 35102-10, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25352594

ABSTRACT

Vpu is an accessory protein encoded by HIV-1 that interferes with multiple host-cell functions. Herein we report that expression of Vpu by transfection into 293T cells causes partial proteolytic cleavage of interferon regulatory factor 3 (IRF3), a key transcription factor in the innate anti-viral response. Vpu-induced IRF3 cleavage is mediated by caspases and occurs mainly at Asp-121. Cleavage produces a C-terminal fragment of ∼37 kDa that comprises the IRF dimerization and transactivation domains but lacks the DNA-binding domain. A similar cleavage is observed upon infection of the Jurkat T-cell line with vesicular stomatitis virus G glycoprotein (VSV-G)-pseudotyped HIV-1. Two other HIV-1 accessory proteins, Vif and Vpr, also contribute to the induction of IRF3 cleavage in both the transfection and the infection systems. The C-terminal IRF3 fragment interferes with the transcriptional activity of full-length IRF3. Cleavage of IRF3 under all of these conditions correlates with cleavage of poly(ADP-ribose) polymerase, an indicator of apoptosis. We conclude that Vpu contributes to the attenuation of the anti-viral response by partial inactivation of IRF3 while host cells undergo apoptosis.


Subject(s)
Caspases/metabolism , HIV-1/metabolism , Human Immunodeficiency Virus Proteins/metabolism , Interferon Regulatory Factor-3/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Apoptosis , HEK293 Cells , HIV-1/genetics , HIV-1/physiology , Host-Pathogen Interactions , Human Immunodeficiency Virus Proteins/genetics , Humans , Immunoblotting , Interferon Regulatory Factor-3/genetics , Jurkat Cells , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mutation , Poly(ADP-ribose) Polymerases/metabolism , Proteolysis , Transfection , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Viral Regulatory and Accessory Proteins/genetics , vif Gene Products, Human Immunodeficiency Virus/genetics , vif Gene Products, Human Immunodeficiency Virus/metabolism , vpr Gene Products, Human Immunodeficiency Virus/genetics , vpr Gene Products, Human Immunodeficiency Virus/metabolism
20.
FASEB J ; 28(1): 106-16, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24097312

ABSTRACT

A 27-aa peptide (P27) was previously shown to decrease the accumulation of human immunodeficiency virus type 1 (HIV-1) in the supernatant of chronically infected cells; however, the mechanism was not understood. Here, we show that P27 prevents virus accumulation by inducing macropinocytosis (MPC). Treatment of HIV-1- and human T-cell lymphotropic virus type 1 (HTLV-1)-infected cells with 2-10 µM P27 caused cell membrane ruffling and uptake of virus and polymerized forms of the peptide into large vacuoles. As demonstrated by electron microscopy, activation of MPC did not require virus or cells infected with virus, as P27 initiated its own uptake in the absence of virus. Inhibitors of MPC, Cytochalasin D and amiloride, decreased P27-mediated uptake of soluble dextran and inhibited P27-induced virus uptake by >60%, which provides further evidence that P27 induces MPC. In CD4(+) HeLa cells, HIV-1 infection was enhanced by P27 up to 4-fold, and P27 increased infection at concentrations as low as 20 nM. The 5-aa C-terminal domain of P27 was necessary for virus uptake and may be responsible for the polymerization of P27 into fibrils. These forms of P27 may play a key role in triggering MPC, making this peptide a useful tool for studying virus uptake and infection, as well as MPC of other macromolecules.


Subject(s)
Endocytosis/drug effects , Peptides/pharmacology , Pinocytosis/drug effects , Amiloride/pharmacology , Cell Line , Cytochalasin D/pharmacology , Humans , Retroviridae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...