Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biochemistry ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963231

ABSTRACT

Collagen hydrolysis, catalyzed by Zn(II)-dependent matrix metalloproteinases (MMPs), is a critical physiological process. Despite previous computational investigations into the catalytic mechanisms of MMP-mediated collagenolysis, a significant knowledge gap in understanding remains regarding the influence of conformational sampling and entropic contributions at physiological temperature on enzymatic collagenolysis. In our comprehensive multilevel computational study, employing quantum mechanics/molecular mechanics (QM/MM) metadynamics (MetD) simulations, we aimed to bridge this gap and provide valuable insights into the catalytic mechanism of MMP-1. Specifically, we compared the full enzyme-substrate complex in solution, clusters in solution, and gas-phase to elucidate insights into MMP-1-catalyzed collagenolysis. Our findings reveal significant differences in the catalytic mechanism when considering thermal effects and the dynamic evolution of the system, contrasting with conventional static potential energy surface QM/MM reaction path studies. Notably, we observed a significant stabilization of the critical tetrahedral intermediate, attributed to contributions from conformational flexibility and entropy. Moreover, we found that protonation of the scissile bond nitrogen occurs via proton transfer from a Zn(II)-coordinated hydroxide rather than from a solvent water molecule. Following C-N bond cleavage, the C-terminus remains coordinated to the catalytic Zn(II), while the N-terminus forms a hydrogen bond with a solvent water molecule. Subsequently, the release of the C-terminus is facilitated by the coordination of a water molecule. Our study underscores the pivotal role of protein conformational dynamics at physiological temperature in stabilizing the transition state of the rate-limiting step and key intermediates, compared to the corresponding reaction in solution. These fundamental insights into the mechanism of collagen degradation provide valuable guidance for the development of MMP-1-specific inhibitors.

2.
Chemphyschem ; : e202400303, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839574

ABSTRACT

Aspartyl/asparaginyl hydroxylase (AspH) catalyzes the post-translational hydroxylations of vital human proteins, playing an essential role in maintaining their biological functions. Single-point mutations in the Second Coordination Sphere (SCS) and long-range (LR) residues of AspH have been linked to pathological conditions such as the ophthalmologic condition Traboulsi syndrome and chronic kidney disease (CKD). Although the clinical impact of these mutations is established, there is a critical knowledge gap regarding their specific atomistic effects on the catalytic mechanism of AspH. In this study, we report integrated computational investigations on the potential mechanistic implications of four mutant forms of human AspH with clinical importance: R735W, R735Q, R688Q, and G434V. All the mutant forms exhibited altered binding interactions with the co-substrate 2-oxoglutarate (2OG) and the main substrate in the ferric-superoxo and ferryl complexes, which are critical for catalysis, compared to the wild-type (WT). Importantly, the mutations strongly influence the energetics of the frontier molecular orbitals (FMOs) and, thereby, the activation energies for the hydrogen atom transfer (HAT) step compared to the WT AspH. Insights from our study can contribute to enzyme engineering and the development of selective modulators for WT and mutants of AspH, ultimately aiding in the treatment of Traboulsi syndrome and CKD.

3.
Chem Sci ; 15(10): 3466-3484, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38455014

ABSTRACT

Biocatalytic C-H oxidation reactions are of important synthetic utility, provide a sustainable route for selective synthesis of important organic molecules, and are an integral part of fundamental cell processes. The multidomain non-heme Fe(ii)/2-oxoglutarate (2OG) dependent oxygenase AspH catalyzes stereoselective (3R)-hydroxylation of aspartyl- and asparaginyl-residues. Unusually, compared to other 2OG hydroxylases, crystallography has shown that AspH lacks the carboxylate residue of the characteristic two-His-one-Asp/Glu Fe-binding triad. Instead, AspH has a water molecule that coordinates Fe(ii) in the coordination position usually occupied by the Asp/Glu carboxylate. Molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies reveal that the iron coordinating water is stabilized by hydrogen bonding with a second coordination sphere (SCS) carboxylate residue Asp721, an arrangement that helps maintain the six coordinated Fe(ii) distorted octahedral coordination geometry and enable catalysis. AspH catalysis follows a dioxygen activation-hydrogen atom transfer (HAT)-rebound hydroxylation mechanism, unusually exhibiting higher activation energy for rebound hydroxylation than for HAT, indicating that the rebound step may be rate-limiting. The HAT step, along with substrate positioning modulated by the non-covalent interactions with SCS residues (Arg688, Arg686, Lys666, Asp721, and Gln664), are essential in determining stereoselectivity, which likely proceeds with retention of configuration. The tetratricopeptide repeat (TPR) domain of AspH influences substrate binding and manifests dynamic motions during catalysis, an observation of interest with respect to other 2OG oxygenases with TPR domains. The results provide unique insights into how non-heme Fe(ii) oxygenases can effectively catalyze stereoselective hydroxylation using only two enzyme-derived Fe-ligating residues, potentially guiding enzyme engineering for stereoselective biocatalysis, thus advancing the development of non-heme Fe(ii) based biomimetic C-H oxidation catalysts, and supporting the proposal that the 2OG oxygenase superfamily may be larger than once perceived.

4.
J Phys Chem B ; 127(45): 9697-9709, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37931179

ABSTRACT

Human matrix metalloproteinase-1 (MMP-1) is a zinc(II)-dependent enzyme that catalyzes collagenolysis. Despite the availability of extensive experimental data, the mechanism of MMP-1-catalyzed collagenolysis remains poorly understood due to the lack of experimental structure of a catalytically productive enzyme-substrate complex of MMP-1. In this study, we apply molecular dynamics and combined quantum mechanics/molecular mechanics to reveal the reaction mechanism of MMP-1 based on a computationally modeled structure of the catalytically competent complex of MMP-1 that contains a large triple-helical peptide substrate. Our proposed mechanism involves the participation of an auxiliary (second) water molecule (wat2) in addition to the zinc(II)-coordinated water (wat1). The reaction initiates through a proton transfer to Glu219, followed by a nucleophilic attack by a zinc(II)-coordinated hydroxide anion nucleophile at the carbonyl carbon of the scissile bond, leading to the formation of a tetrahedral intermediate (IM2). The process continues with a hydrogen-bond rearrangement to facilitate proton transfer from wat2 to the amide nitrogen of the scissile bond and, finally, C-N bond cleavage. The calculations indicate that the rate-determining step is the water-mediated nucleophilic attack with an activation energy barrier of 22.3 kcal/mol. Furthermore, the calculations show that the hydrogen-bond rearrangement/proton-transfer step can proceed in a consecutive or concerted manner, depending on the conformation of the tetrahedral intermediate, with the consecutive mechanism being energetically preferable. Overall, the study reveals the crucial role of a second water molecule and the dynamics for effective MMP-1-catalyzed collagenolysis.


Subject(s)
Matrix Metalloproteinase 1 , Zinc , Humans , Hydrolysis , Matrix Metalloproteinase 1/chemistry , Zinc/chemistry , Protons , Molecular Dynamics Simulation , Collagen , Water , Catalysis
5.
Chemphyschem ; 24(3): e202200943, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723036

ABSTRACT

The front cover artwork is provided by Dr. Karabencheva-Christova's group at Michigan Technological University. The images show the initially formed and the catalytically productive conformations of MMP-1 complex with the Triple Helical Peptide (THP), the free energy profile connecting them as well as the coordination geometry of the catalytic zinc (II). The background shows the collagen macromolecule. Read the full text of the Research Article at 10.1002/cphc.202200649.

6.
Chemphyschem ; 24(3): e202200649, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36161746

ABSTRACT

Metalloproteinase-1 (MMP-1) catalyzed collagen degradation is essential for a wide variety of normal physiological processes, while at the same time contributing to several diseases in humans. Therefore, a comprehensive understanding of this process is of great importance. Although crystallographic and spectroscopic studies provided fundamental information about the structure and function of MMP-1, the precise mechanism of collagen degradation especially considering the complex and flexible structure of the substrate, remains poorly understood. In addition, how the protein environment dynamically reorganizes at the atomic scale into a catalytically active state capable of collagen hydrolysis remains unknown. In this study, we applied experimentally-guided multiscale molecular modeling methods including classical molecular dynamics (MD), well-tempered (WT) classical metadynamics (MetD), combined quantum mechanics/molecular mechanics (QM/MM) MD and QM/MM MetD simulations to explore and characterize the early catalytic events of MMP-1 collagenolysis. Importantly the study provided a complete atomic and dynamic description of the transition from the open to the closed form of the MMP-1•THP complex. Notably, the formation of catalytically active Michaelis complex competent for collagen cleavage was characterized. The study identified the changes in the coordination state of the catalytic zinc(II) associated with the conformational transformation and the formation of catalytically productive ES complex. Our results confirm the essential role of the MMP-1 catalytic domain's α-helices (hA, hB and hC) and the linker region in the transition to the catalytically competent ES complex. Overall, the results provide unique mechanistic insight into the conformational transformations and associated changes in the coordination state of the catalytic zinc(II) that would be important for the design of effective MMP-1 inhibitors.


Subject(s)
Matrix Metalloproteinase 1 , Molecular Dynamics Simulation , Humans , Matrix Metalloproteinase 1/chemistry , Collagen/chemistry , Collagen/metabolism , Hydrolysis , Catalysis
7.
ACS Catal ; 12(9): 5327-5344, 2022 May 06.
Article in English | MEDLINE | ID: mdl-36339349

ABSTRACT

Methylation of cytosine bases is strongly linked to gene expression, imprinting, aging, and carcinogenesis. The Ten-eleven translocation (TET) family of enzymes, which are Fe(II)/2-oxoglutarate (2OG)-dependent enzymes, employ Fe(IV)=O species to dealkylate the lesioned bases to an unmodified cytosine. Recently, it has been shown that the TET2 enzyme can catalyze promiscuously DNA substrates containing unnatural alkylated cytosine. Such unnatural substrates of TET can be used as direct probes for measuring the TET activity or capturing TET from cellular samples. Herein, we studied the catalytic mechanisms during the oxidation of the unnatural C5-position modifications (5-ethylcytosine (5eC), 5-vinylcytosine (5vC) and 5-ethynylcytosine (5eyC)) and the demethylation of N4-methylated lesions (4-methylcytosine (4mC) and 4,4-dimethylcytosine(4dmC)) of the cytosine base by the TET2 enzyme using molecular dynamics (MD) and combined quantum mechanics and molecular mechanics (QM/MM) computational approaches. The results reveal that the chemical nature of the alkylation of the double-stranded (ds) DNA substrates induces distinct changes in the interactions in the binding site, the second coordination sphere, and long-range correlated motions of the ES complexes. The rate-determining hydrogen atom transfer (HAT) is faster in N4-methyl substituent substrates than in the C5-alkylations. Importantly, the calculations show the preference of hydroxylation over desaturation in both 5eC and 5vC substrates. The studies elucidate the post-hydroxylation rearrangements of the hydroxylated intermediates of 5eyC and 5vC to ketene and 5-formylmethylcytosine (5fmC), respectively, and hydrolysis of hemiaminal intermediate of 4mC to formaldehyde and unmodified cytosine proceed exclusively in aqueous solution outside of the enzyme environment. Overall, the studies show that the chemical nature of the unnatural alkylated cytosine substrates exercises distinct effects on the binding interactions, reaction mechanism, and dynamics of TET2.

8.
JACS Au ; 2(9): 2169-2186, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36186565

ABSTRACT

Fe(II)-dependent oxygenases employ hydrogen atom transfer (HAT) to produce a myriad of products. Understanding how such enzymes use dynamic processes beyond the immediate vicinity of the active site to control the selectivity and efficiency of HAT is important for metalloenzyme engineering; however, obtaining such knowledge by experiments is challenging. This study develops a computational framework for identifying second coordination sphere (SCS) and especially long-range (LR) residues relevant for catalysis through dynamic cross-correlation analysis (DCCA) using the human histone demethylase PHF8 (KDM7B) as a model oxygenase. Furthermore, the study explores the mechanistic pathways of influence of the SCS and LR residues on the HAT reaction. To demonstrate the plausibility of the approach, we investigated the effect of a PHF8 F279S clinical mutation associated with X-linked intellectual disability, which has been experimentally shown to ablate PHF8-catalyzed demethylation. In agreement, the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies showed a change in the H31-14K9me2 substrate orientation and an increased HAT barrier. We systematically analyzed the pathways by which the identified SCS and LR residues may influence HAT by exploring changes in H3K9me2 substrate orientation, interdomain correlated motions, HAT transition state stabilization, reaction energetics, electron transfer mechanism, and alterations in the intrinsic electric field of PHF8. Importantly, SCS and LR variations decrease key motions of α9-α12 of the JmjC domain toward the Fe(IV)-center that are associated with tighter binding of the H31-14K9me2 substrate. SCS and LR residues alter the intrinsic electric field of the enzyme along the reaction coordinate and change the individual energetic contributions of residues toward TS stabilization. The overall results suggest that DCCA can indeed identify non-active-site residues relevant for catalysis. The substitutions of such dynamically correlated residues might be used as a tool to tune HAT in non-heme Fe(II)- and 2OG-dependent enzymes.

9.
Chemistry ; 28(65): e202201474, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-35948517

ABSTRACT

Carbene transfer biocatalysis has evolved from basic science to an area with vast potential for the development of new industrial processes. In this study, we show that YfeX, naturally a peroxidase, has great potential for the development of new carbene transferases, due to its high intrinsic reactivity, especially for the N-H insertion reaction of aromatic and aliphatic primary and secondary amines. YfeX shows high stability against organic solvents (methanol and DMSO), greatly improving turnover of hydrophobic substrates. Interestingly, in styrene cyclopropanation, WT YfeX naturally shows high enantioselectivity, generating the trans product with 87 % selectivity for the (R,R) enantiomer. WT YfeX also catalyzes the Si-H insertion efficiently. Steric effects in the active site were further explored using the R232A variant. Quantum Mechanics/Molecular Mechanics (QM/MM) calculations reveal details on the mechanism of Si-H insertion. YfeX, and potentially other peroxidases, are exciting new targets for the development of improved carbene transferases.


Subject(s)
Methane , Transferases , Transferases/metabolism , Methane/chemistry , Biocatalysis , Catalytic Domain , Peroxidases
10.
Chemistry ; 27(46): 11750, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34191375

ABSTRACT

Invited for the cover of this issue are Christo Z. Christov and co-workers at Michigan Technological University and University of Oxford. The image depicts the effects of applying an external electric field on the demethylation of dimethylated arginine substrate by a non-heme Fe center Histone N-methyl arginine demethylase. Read the full text of the article at 10.1002/chem.202101174.

11.
Chemistry ; 27(46): 11827-11836, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-33989435

ABSTRACT

Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2-oxoglutarate dependent Jumonji-C (JmjC) Nϵ-methyl lysine histone demethylases also have N-methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N-methyl arginine demethylation by human KDM4E and compare the results with those reported for N-methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen-bond between the substrate Ser1 and Tyr178. The calculations imply that in either C-H or N-H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N-methyl arginine demethylation, electron transfer occurs via a σ-channel; the transition state for the N-H pathway is ∼10 kcal/mol higher than for the C-H pathway due to the higher bond dissociation energy of the N-H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier-lowering effect on the C-H pathway, by contrast, such EEFs inhibit the N-H activation rate. The overall results imply that KDM4 catalyzed N-methyl arginine demethylation and N-methyl lysine demethylation occur via similar C-H abstraction and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.


Subject(s)
Histones , Jumonji Domain-Containing Histone Demethylases , Arginine/metabolism , Catalysis , Demethylation , Epigenesis, Genetic , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/metabolism
12.
ACS Cent Sci ; 6(5): 795-814, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32490196

ABSTRACT

AlkB and its human homologue AlkBH2 are Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases that repair alkylated DNA bases occurring as a consequence of reactions with mutagenic agents. We used molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) methods to investigate how structural dynamics influences the selectivity and mechanisms of the AlkB- and AlkBH2-catalyzed demethylation of 3-methylcytosine (m3C) in single (ssDNA) and double (dsDNA) stranded DNA. Dynamics studies reveal the importance of the flexibility in both the protein and DNA components in determining the preferences of AlkB for ssDNA and of AlkBH2 for dsDNA. Correlated motions, including of a hydrophobic ß-hairpin, are involved in substrate binding in AlkBH2-dsDNA. The calculations reveal that 2OG rearrangement prior to binding of dioxygen to the active site Fe is preferred over a ferryl rearrangement to form a catalytically productive Fe(IV)=O intermediate. Hydrogen atom transfer proceeds via a σ-channel in AlkBH2-dsDNA and AlkB-dsDNA; in AlkB-ssDNA, there is a competition between σ- and π-channels, implying that the nature of the complexed DNA has potential to alter molecular orbital interactions during the substrate oxidation. Our results reveal the importance of the overall protein-DNA complex in determining selectivity and how the nature of the substrate impacts the mechanism.

13.
Adv Protein Chem Struct Biol ; 117: 113-125, 2019.
Article in English | MEDLINE | ID: mdl-31564306

ABSTRACT

The demethylation of lysine residues of histone proteins is a key epigenetic mechanism in cells. The enzymes that catalyze these processes are called histone demethylases (KDMs). The largest family of KDMs is the Jumonji C (JmjC) domain-containing enzymes; these includes KDM2-7 subfamily of enzymes. The JmjC proteins are Fe(II) and 2-Oxoglutarate (2OG) - dependent dioxygenases that couple substrate oxidation to decarboxylation of 2OG to form succinate and CO2. The KDM7 subfamily of enzymes - PHF8 (KDM7B) and KIAA1718 (KDM7A) are human JmjC 2OG-dependent Nε-methyl lysine demethylases and are involved in demethylation of lysine residues in histones such as H3K27me2/1, H3K9me2/1 and H4K20me1. These enzymes are involved in multiple pathologic processes, including cancers and mental retardation. In this chapter, we present the current state of the art in the structural, biochemical and computational studies of KDM7 enzymes.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Jumonji Domain-Containing Histone Demethylases/chemistry , Models, Molecular , Protein Conformation , Structure-Activity Relationship
14.
Chemistry ; 25(21): 5422-5426, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30817054

ABSTRACT

The human KDM7 subfamily histone H3 Nϵ-methyl lysine demethylases PHF8 (KDM7B) and KIAA1718 (KDM7A) have different substrate selectivities and are linked to genetic diseases and cancer. We describe experimentally based computational studies revealing that flexibility of the region linking the PHD finger and JmjC domains in PHF8 and KIAA1718 regulates interdomain interactions, the nature of correlated motions, and ultimately H3 binding and demethylation site selectivity. F279S an X-linked mental retardation mutation in PHF8 is involved in correlated motions with the iron ligands and second sphere residues. The calculations reveal key roles of a flexible protein environment in productive formation of enzyme-substrate complexes and suggest targeting the flexible KDM7 linker region is of interest from a medicinal chemistry perspective.


Subject(s)
Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Transcription Factors/metabolism , Binding Sites , Ferrous Compounds/chemistry , Ferrous Compounds/metabolism , Histone Demethylases/chemistry , Histones/chemistry , Histones/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases/chemistry , Ligands , Methylation , Molecular Dynamics Simulation , Principal Component Analysis , Protein Binding , Protein Domains , Protein Structure, Tertiary , Quantum Theory , Substrate Specificity , Transcription Factors/chemistry
15.
Org Biomol Chem ; 17(8): 2223-2231, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30720838

ABSTRACT

N-Methylation of DNA/RNA bases can be regulatory or damaging and is linked to diseases including cancer and genetic disorders. Bacterial AlkB and human FTO are DNA/RNA demethylases belonging to the Fe(ii) and 2-oxoglutarate oxygenase superfamily. Modelling studies reveal conformational dynamics influence structure-function relationships of AlkB and FTO, e.g. why 1-methyladenine is a better substrate for AlkB than 6-methyladenine. Simulations show that the flexibility of the double stranded DNA substrate in AlkB influences correlated motions, including between the core jelly-roll fold and an active site loop involved in substrate binding. The FTO N- and C-terminal domains move in respect to one another in a manner likely important for substrate binding. Substitutions, including clinically observed ones, influencing catalysis contribute to the network of correlated motions in AlkB and FTO. Overall, the calculations highlight the importance of the overall protein environment and its flexibility to the geometry of the reactant complexes.


Subject(s)
AlkB Enzymes/chemistry , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/chemistry , Escherichia coli K12/enzymology , Escherichia coli Proteins/chemistry , Adenine/analogs & derivatives , Adenine/metabolism , AlkB Enzymes/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Catalytic Domain , Crystallography, X-Ray , DNA Methylation , DNA, Single-Stranded/metabolism , Escherichia coli K12/chemistry , Escherichia coli K12/metabolism , Escherichia coli Proteins/metabolism , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Substrate Specificity
16.
Biol Chem ; 400(5): 575-587, 2019 04 24.
Article in English | MEDLINE | ID: mdl-30367780

ABSTRACT

Disulfide bonds play a critical role in a variety of structural and mechanistic processes associated with proteins inside the cells and in the extracellular environment. The thioredoxin family of proteins like thioredoxin (Trx), glutaredoxin (Grx) and protein disulfide isomerase, are involved in the formation, transfer or isomerization of disulfide bonds through a characteristic thiol-disulfide exchange reaction. Here, we review the structural and mechanistic determinants behind the thiol-disulfide exchange reactions for the different enzyme types within this family, rationalizing the known experimental data in light of the results from computational studies. The analysis sheds new atomic-level insight into the structural and mechanistic variations that characterize the different enzymes in the family, helping to explain the associated functional diversity. Furthermore, we review here a pattern of stabilization/destabilization of the conserved active-site cysteine residues presented beforehand, which is fully consistent with the observed roles played by the thioredoxin family of enzymes.


Subject(s)
Disulfides/chemistry , Glutaredoxins/chemistry , Protein Disulfide-Isomerases/chemistry , Thioredoxins/chemistry , Disulfides/metabolism , Glutaredoxins/metabolism , Humans , Models, Molecular , Protein Disulfide-Isomerases/metabolism , Thioredoxins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...