Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Anal Chem ; 94(25): 8867-8873, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35699939

ABSTRACT

Nanomaterial-based biosensors are a promising fit for portable and field-deployable diagnosis sensor devices due to their mass production, miniaturization, and integration capabilities. However, the fabrication of highly stable and reproducible biosensor devices is challenging. In this work, we grow a vertically oriented architecture of zinc oxide nanorods onto the active working area (i.e., the channel between the source and drain) of a field-effect transistor (FET) using a low-temperature hydrothermal method. The glucose oxidase enzyme was immobilized on the zinc oxide nanorod surface by a physical adsorption method to fabricate the electrolyte-gated FET-based glucose biosensor. The electrical properties of the electrolyte-gated FET biosensor were measured with different glucose concentrations. We found a linear increase in current up to 80 mM glucose concentration with high sensitivity (74.78 µA/mMcm2) and a low detection limit (∼0.05 mM). We illustrate a highly reproducible fabrication process of zinc oxide nanorod-based FETs, where vertically grown nanorods with a higher surface-to-volume ratio enhance the enzyme immobilization, provide a microenvironment for longer enzyme activity, and translate to better glucose sensing parameters. Additionally, our electrolyte-gated FET biosensor showed promising application in freshly drawn mouse blood samples. These findings suggest a great opportunity to translate into practical high-performance biosensors for a broad range of analytes.


Subject(s)
Biosensing Techniques , Nanotubes , Zinc Oxide , Animals , Biosensing Techniques/methods , Electrolytes , Glucose , Mice
2.
Int J Mol Sci ; 23(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35457269

ABSTRACT

Agriculture crop development and production may be hampered in the modern era because of the increasing prevalence of ecological problems around the world. In the last few centuries, plant and agrarian scientific experts have shown significant progress in promoting efficient and eco-friendly approaches for the green synthesis of nanoparticles (NPs), which are noteworthy due to their unique physio-biochemical features as well as their possible role and applications. They are thought to be powerful sensing molecules that regulate a wide range of significant physiological and biochemical processes in plants, from germination to senescence, as well as unique strategies for coping with changing environmental circumstances. This review highlights current knowledge on the plant extract-mediated synthesis of NPs, as well as their significance in reprogramming plant traits and ameliorating abiotic stresses. Nano particles-mediated modulation of phytohormone content in response to abiotic stress is also displayed. Additionally, the applications and limitations of green synthesized NPs in various scientific regimes have also been highlighted.


Subject(s)
Nanoparticles , Stress, Physiological , Agriculture , Crops, Agricultural , Germination
3.
Chemosphere ; 287(Pt 2): 132142, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34826894

ABSTRACT

Green synthesis of nanoparticles (NPs) is competent in inducing physiological responses in plants for combating the abiotic stresses. Considering this, salt stress is one of the most alarming conditions that exerts complex and polygenic impacts on morph-physiological functioning of plants; resulting in reduced crop productivity and yield. Therefore, understanding the salt responses and tolerance mechanisms are important for sustaining crop productivity. In the current study, we have examined the effects of biosynthesized gold nanoparticles (AuNPs) on wheat (Triticum aestivum) plants under salt stress. Green-synthesized AuNPs were found beneficial in modulating the K+/Na+ ratio, chlorophyll concentration, defense systems, nitrogen assimilation, stomatal dynamics and growth traits under salt stress condition. Furthermore, the excessive accumulation of oxidative stress markers including reactive oxygen/nitrogen species was controlled in response of AuNPs treatment under salt stress. Overall, modulation of these traits commanded to induce salt stress tolerance in wheat plants.


Subject(s)
Metal Nanoparticles , Triticum , Gold , Ions , Nitric Oxide , Nitrogen , Salt Stress , Stress, Physiological
4.
J Biomed Nanotechnol ; 17(4): 615-626, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-35057888

ABSTRACT

We synthesized bioinspired sericin encapsulated gold nanoparticles (SGNPs) using HAuCl4 as the starting material in a bottom-up approach. Further, two-dimensional (2D) and three-dimensional (3D) conformational changes (folding and unfolding) in sericin were studied using circular dichroism (CD) and fluorescence spectroscopy, respectively, during and after the synthesis of particles. Finally, the synthesized SGNPs were characterized using several physical techniques to ensure their correct synthesis and study the size, stability, and charge over the surface of particles. At the beginning of the reaction, when gold was in the ionic form (Au+³), sericin exhibited maximum electrostatic interaction and underwent unfolding. Au+³ reduced to Au during the reaction, and sericin regained its 3D confirmation due to a decrease in its native electrostatic interactions. However, CD revealed the same patterns of unfolding and folding; a decrease in α helix and an increase inß3 pleated sheets were noticed. Although the 3D structure of sericin was restored after the synthesis of SGNPs, it was substantially altered. In addition, certain changes in the 2D structure were observed; however, these did not alter the activity of sericin. Furthermore, Fourier-transform infrared spectroscopy (FTIR) confirmed these findings. The SGNPs were found to be effective against lung cancer (A549 cells), with an IC50 of 145.49 ßM, without exerting any toxic effects on normal cells (NRK cells). The effectiveness of SGNPs was examined by MTT cytotoxicity and nuclear fragmentation assays. Furthermore, we assessed their ability to produce excessive ROS and release Cyt-c from the mitochondria for caspase-3-mediated apoptosis.


Subject(s)
Antineoplastic Agents , Metal Nanoparticles , Sericins , Antineoplastic Agents/pharmacology , Gold , Silk
5.
Biomolecules ; 10(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-33147820

ABSTRACT

Salinity is major abiotic stress affecting crop yield, productivity and reduces the land-usage area for agricultural practices. The purpose of this study is to analyze the effect of green-synthesized silver nanoparticle (AgNP) on physiological traits of wheat (Triticum aestivum) under salinity stress. Using augmented and high-throughput characterization of synthesized AgNPs, this study investigated the proximity of AgNPs-induced coping effects under stressful cues by measuring the germination efficiency, oxidative-biomarkers, enzymatic and non-enzymatic antioxidants, proline and nitrogen metabolism, stomatal dynamics, and ABA content. Taken together, the study shows a promising approach in salt tolerance and suggests that mechanisms of inducing the salt tolerance depend on proline metabolism, ions accumulation, and defense mechanisms. This study ascertains the queries regarding the correlation between nanoparticles use and traditional agriculture methodology; also significantly facilitates to reach the goal of sustainable developments for increasing crop productivity via much safer and greener approachability.


Subject(s)
Metal Nanoparticles/chemistry , Salt Stress/drug effects , Salt Tolerance/genetics , Triticum/growth & development , Antioxidants/chemistry , Antioxidants/pharmacology , Gene Expression Regulation, Plant/drug effects , Germination/drug effects , Homeostasis/drug effects , Ions/chemistry , Ions/pharmacology , Salt Tolerance/physiology , Silver/chemistry , Triticum/physiology
6.
Sci Rep ; 9(1): 13826, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554850

ABSTRACT

Enzymatic gold nanoparticles (B-GNPs) have been synthesized using a natural anticancer agent bromelain (a cysteine protease) and these nanoparticles were used to bioconjugate Cisplatin (highly effective against osteosarcoma and lung cancer). Cisplatin bioconjugated bromelain encapsulated gold nanoparticles (B-C-GNPs) were found profoundly potent against same cancers at much lower concentration with minimum side effects due to the synergistic effect of bromelain. The B-C-GNPs have been observed to inhibit the proliferation of osteosarcoma cell lines Saos-2 and MG-63 with IC50 estimation of 4.51 µg/ml and 3.21 µg/ml, respectively, and against small lung cancer cell line A-549 with IC50 2.5 µg/ml which is lower than IC50 of cisplatin against same cell lines. The B-GNPs/B-C-GNPs were characterized by TEM, UV-Visible spectroscopy, Zeta potential and DLS to confirm the production, purity, crystalline nature, stability of nanoemulsion, size and shape distribution. The change in 2D and 3D conformation of bromelain after encapsulation was studied by Circular Dichroism and Fluorometry, respectively. It was found that after encapsulation, a 19.4% loss in secondary structure was observed, but tertiary structure was not altered significantly and this loss improved the anticancer activity. The confirmation of bioconjugation of cisplatin with B-GNPs was done by UV-Visible spectroscopy, TEM, FTIR, 2D 1H NMR DOSY and ICP-MS. Further, it was found that almost ~4 cisplatin molecules bound with each B-GNPs nanoparticle.


Subject(s)
Bone Neoplasms/metabolism , Bromelains/pharmacology , Cisplatin/pharmacology , Gold/chemistry , Lung Neoplasms/metabolism , Osteosarcoma/metabolism , Small Cell Lung Carcinoma/metabolism , A549 Cells , Bone Neoplasms/drug therapy , Bromelains/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cisplatin/chemistry , Drug Screening Assays, Antitumor , Drug Synergism , Humans , Inhibitory Concentration 50 , Lung Neoplasms/drug therapy , Metal Nanoparticles , Models, Molecular , Osteosarcoma/drug therapy , Protein Conformation , Reactive Oxygen Species/metabolism , Small Cell Lung Carcinoma/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...