Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(49): 30925, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-35498943

ABSTRACT

[This corrects the article DOI: 10.1039/D0RA09265G.].

2.
RSC Adv ; 11(7): 3963-3971, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-35424351

ABSTRACT

The preparation of graphene in three-dimensional mode represents an alternative method to maintain its characteristically large surface area, which, under normal circumstances, is diminished by the restacking of the individual sheets. Sufficiently stable 3D graphene enables the high surface area characteristic of monoatomic graphene layers to be obtained. Based on the coupling of the high surface area and the void spaces that are thus created, which act as pores, 3D graphene is anticipated to have potential as a sorbent material. In this study, lightweight 3D hollow graphene featuring a unique thin skeletal framework was developed using the Pickering emulsion route for oil absorbent applications. In this technique, toluene droplets stabilized by graphene oxide layers in a water system were used as the template, and upon the removal of the solvent by freeze-drying and microwave-assisted reduction, 3D hollow graphene was obtained. The produced 3D graphene demonstrates excellent sorption efficiencies of 84 to 145 g g-1 for different types of oil and organic solvents in the first absorption. This excellence can be attributed to its multi-level porosity as elucidated by mercury intrusion porosimetry (MIP) and Brunauer-Emmett-Teller (BET) surface area analysis, which indicated a bimodal pore size distribution with macroporosity and mesoporosity and a surface area of 127 m2 g-1. The 3D hollow graphene prepared using the Pickering emulsion template technique incorporating microwave treatment can be readily recycled using a solvent extraction process for a total of ten sorption-desorption cycles without significant losses in its efficiency, making it promising for further consideration as an appropriate material for oil spill incidents.

3.
R Soc Open Sci ; 7(3): 192050, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32269813

ABSTRACT

Superhydrophilic graphene oxide/electrospun cellulose nanofibre (GO/CNF) was synthesized, characterized and successfully used in a solid-phase membrane tip adsorption (SPMTA) as an adsorbent towards a simultaneous analysis of polar organophosphorus pesticides (OPPs) in several food and water samples. Separation, determination and quantification were achieved prior to ultra-performance liquid chromatography coupled with ultraviolet detector. The influence of several parameters such as sample pH, adsorption time, adsorbent dosage and initial concentration were investigated. SPMTA was linear in the range of 0.05 and 10 mg l-1 under the optimum adsorption conditions (sample pH 12; 5 mg of adsorbent dosage; 15 min of adsorption time) for methyl parathion, ethoprophos, sulfotepp and chlorpyrifos with excellent correlation coefficients of 0.994-0.999. Acceptable precision (RSDs) as achieved for intraday (0.06-5.44%, n = 3) and interday (0.17-7.76%, n = 3) analyses. Low limits of detection (0.01-0.05 mg l-1) and satisfactory consistency in adsorption (71.14-99.95%) were obtained for the spiked OPPs from Sungai Pahang, Tasik Cheras, cabbages and rice samples. The adsorption data were well followed the second-order kinetic model and fits the Freundlich adsorption model. The newly synthesized GO/CNF showed a great adsorbent potential for OPPs analysis.

4.
Sci Rep ; 9(1): 14952, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31628399

ABSTRACT

In the present work, polyvinyl-alcohol/titanium dioxide (PVA/TiO2) nanofibers are utilized as a light scattering layer (LSL) on top of the TiO2 nanoparticles photoanode. The TiO2 nanoparticles decorated PVA/TiO2 nanofibers display a power conversion efficiency (PCE) of 4.06%, which is 33% higher than TiO2 nanoparticles without LSL, demonstrating the incorporation of PVA/TiO2 nanofibers as LSL reduces the radiation loss and increases the excitation of the electron that leads to high PCE. The incorporation of PVA/TiO2 nanofibers as LSL also increases the electron life time and charge collection efficiency in comparison to the TiO2 nanoparticles without LSL.

5.
Sci Rep ; 8(1): 7399, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29743664

ABSTRACT

Three-dimensional (3D) printing technology provides a novel approach to material fabrication for various applications because of its ability to create low-cost 3D printed platforms. In this study, a printable graphene-based conductive filament was employed to create a range of 3D printed electrodes (3DEs) using a commercial 3D printer. This printing technology provides a simplistic and low-cost approach, which eliminates the need for the ex-situ modification and post-treatment of the product. The conductive nature of the 3DEs provides numerous deposition platforms for electrochemical active nanomaterials such as graphene, polypyrrole, and cadmium sulfide, either through electrochemical or physical approaches. To provide proof-of-concept, these 3DEs were physiochemically and electrochemically evaluated and proficiently fabricated into a supercapacitor and photoelectrochemical sensor. The as-fabricated supercapacitor provided a good capacitance performance, with a specific capacitance of 98.37 Fg-1. In addition, these 3DEs were fabricated into a photoelectrochemical sensing platform. They had a photocurrent response that exceeded expectations (~724.1 µA) and a lower detection limit (0.05 µM) than an ITO/FTO glass electrode. By subsequently modifying the printing material and electrode architecture, this 3D printing approach could provide a facile and rapid manufacturing process for energy devices based on the conceptual design.

SELECTION OF CITATIONS
SEARCH DETAIL
...