Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Gen Virol ; 105(2)2024 02.
Article in English | MEDLINE | ID: mdl-38305775

ABSTRACT

Filoviridae is a family of negative-sense RNA viruses with genomes of about 13.1-20.9 kb that infect fish, mammals and reptiles. The filovirid genome is a linear, non-segmented RNA with five canonical open reading frames (ORFs) that encode a nucleoprotein (NP), a polymerase cofactor (VP35), a glycoprotein (GP1,2), a transcriptional activator (VP30) and a large protein (L) containing an RNA-directed RNA polymerase (RdRP) domain. All filovirid genomes encode additional proteins that vary among genera. Several filovirids (e.g., Ebola virus, Marburg virus) are pathogenic for humans and highly virulent. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Filoviridae, which is available at www.ictv.global/report/filoviridae.


Subject(s)
Ebolavirus , Marburgvirus , Rhabdoviridae , Animals , Humans , Ebolavirus/genetics , Rhabdoviridae/genetics , Phylogeny , Genome, Viral , Virus Replication , Mammals/genetics
2.
J Infect Dis ; 229(Supplement_2): S265-S274, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-37995376

ABSTRACT

Variola virus (VARV), the etiological agent of smallpox, had enormous impacts on global health prior to its eradication. In the absence of global vaccination programs, mpox virus (MPXV) has become a growing public health threat that includes endemic and nonendemic regions across the globe. While human mpox resembles smallpox in clinical presentation, there are considerable knowledge gaps regarding conserved molecular pathogenesis between these 2 orthopoxviruses. Thus, we sought to compare MPXV and VARV infections in human monocytes through kinome analysis. We performed a longitudinal analysis of host cellular responses to VARV infection in human monocytes as well as a comparative analysis to clade I MPXV-mediated responses. While both viruses elicited strong activation of cell responses early during infection as compared to later time points, several key differences in cell signaling events were identified and validated. These observations will help in the design and development of panorthopoxvirus therapeutics.


Subject(s)
Orthopoxvirus , Smallpox , Variola virus , Humans , Monkeypox virus , Monocytes
3.
Arch Virol ; 168(8): 220, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537381

ABSTRACT

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group continues to prospectively refine the established nomenclature for taxa included in family Filoviridae in an effort to decrease confusion of genus, species, and virus names and to adhere to amended stipulations of the International Code of Virus Classification and Nomenclature (ICVCN). Recently, the genus names Ebolavirus and Marburgvirus were changed to Orthoebolavirus and Orthomarburgvirus, respectively. Additionally, all established species names in family Filoviridae now adhere to the ICTV-mandated binomial format. Virus names remain unchanged and valid. Here, we outline the revised taxonomy of family Filoviridae as approved by the ICTV in April 2023.


Subject(s)
Ebolavirus , Filoviridae , Marburgvirus , Viruses
4.
J Aerosol Med Pulm Drug Deliv ; 36(5): 235-245, 2023 10.
Article in English | MEDLINE | ID: mdl-37262184

ABSTRACT

Background: Significant evidence suggests that SARS-CoV-2 can be transmitted via respiratory aerosols, which are known to vary as a function of respiratory activity. Most animal models examine disease presentation following inhalation of small-particle aerosols similar to those generated during quiet breathing or speaking. However, despite evidence that particle size can influence dose-infectivity relationships and disease presentation for other microorganisms, no studies have examined the infectivity of SARS-CoV-2 contained in larger particle aerosols similar to those produced during coughing, singing, or talking. Therefore, the aim of the present study was to assess the influence of aerodynamic diameter on the infectivity and virulence of aerosols containing SARS-CoV-2 in a hamster model of inhalational COVID-19. Methods: Dose-response relationships were assessed for two different aerosol particle size distributions, with mass median aerodynamic diameters (MMADs) of 1.3 and 5.2 µm in groups of Syrian hamsters exposed to aerosols containing SARS-CoV-2. Results: Disease was characterized by viral shedding in oropharyngeal swabs, increased respiratory rate, decreased activity, and decreased weight gain. Aerosol particle size significantly influenced the median doses to induce seroconversion and viral shedding, with both increasing ∼30-fold when the MMAD was increased. In addition, disease presentation was dose-dependent, with seroconversion and viral shedding occurring at lower doses than symptomatic disease characterized by increased respiratory rate and decreased activity. Conclusions: These results suggest that aerosol particle size may be an important factor influencing the risk of COVID-19 transmission and needs to be considered when developing animal models of disease. This result agrees with numerous previous studies with other microorganisms and animal species, suggesting that it would be generally translatable across different species. However, it should be noted that the absolute magnitude of the observed shifts in the median doses obtained with the specific particle sizes utilized herein may not be directly applicable to other species.


Subject(s)
COVID-19 , Animals , Cricetinae , Mesocricetus , Administration, Inhalation , Particle Size , SARS-CoV-2 , Respiratory Aerosols and Droplets , Patient Acuity
5.
J Aerosol Med Pulm Drug Deliv ; 35(6): 296-306, 2022 12.
Article in English | MEDLINE | ID: mdl-36318785

ABSTRACT

Background: As the COVID-19 pandemic has progressed, numerous variants of SARS-CoV-2 have arisen, with several displaying increased transmissibility. Methods: The present study compared dose-response relationships and disease presentation in nonhuman primates infected with aerosols containing an isolate of the Gamma variant of SARS-CoV-2 to the results of our previous study with the earlier WA-1 isolate of SARS-CoV-2. Results: Disease in Gamma-infected animals was mild, characterized by dose-dependent fever and oronasal shedding of virus. Differences were observed in shedding in the upper respiratory tract between Gamma- and WA-1-infected animals that have the potential to influence disease transmission. Specifically, the estimated median doses for shedding of viral RNA or infectious virus in nasal swabs were approximately 10-fold lower for the Gamma variant than the WA-1 isolate. Given that the median doses for fever were similar, this suggests that there is a greater difference between the median doses for viral shedding and fever for Gamma than for WA-1 and potentially an increased range of doses for Gamma over which asymptomatic shedding and disease transmission are possible. Conclusions: These results complement those of previous studies, which suggested that differences in exposure dose may help to explain the range of clinical disease presentations observed in individuals with COVID-19, highlighting the importance of public health measures designed to limit exposure dose, such as masking and social distancing. The dose-response data provided by this study are important to inform disease transmission and hazard modeling, as well as to inform dose selection in future studies examining the efficacy of therapeutics and vaccines in animal models of inhalational COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Pandemics/prevention & control , Administration, Inhalation , Primates
6.
PLoS Pathog ; 17(8): e1009865, 2021 08.
Article in English | MEDLINE | ID: mdl-34424943

ABSTRACT

While evidence exists supporting the potential for aerosol transmission of SARS-CoV-2, the infectious dose by inhalation remains unknown. In the present study, the probability of infection following inhalation of SARS-CoV-2 was dose-dependent in a nonhuman primate model of inhalational COVID-19. The median infectious dose, assessed by seroconversion, was 52 TCID50 (95% CI: 23-363 TCID50), and was significantly lower than the median dose for fever (256 TCID50, 95% CI: 102-603 TCID50), resulting in a group of animals that developed an immune response post-exposure but did not develop fever or other clinical signs of infection. In a subset of these animals, virus was detected in nasopharyngeal and/or oropharyngeal swabs, suggesting that infected animals without signs of disease are able to shed virus and may be infectious, which is consistent with reports of asymptomatic spread in human cases of COVID-19. These results suggest that differences in exposure dose may be a factor influencing disease presentation in humans, and reinforce the importance of public health measures that limit exposure dose, such as social distancing, masking, and increased ventilation. The dose-response data provided by this study are important to inform disease transmission and hazard modeling, and, ultimately, mitigation strategies. Additionally, these data will be useful to inform dose selection in future studies examining the efficacy of therapeutics and vaccines against inhalational COVID-19, and as a baseline in healthy, young adult animals for assessment of the importance of other factors, such as age, comorbidities, and viral variant, on the infectious dose and disease presentation.


Subject(s)
COVID-19/transmission , COVID-19/virology , Macaca fascicularis , Seroconversion , Animals , Chlorocebus aethiops , Disease Models, Animal , Female , Fever/virology , Inhalation Exposure , Male , Vero Cells , Viral Load
7.
Cells ; 10(6)2021 05 25.
Article in English | MEDLINE | ID: mdl-34070626

ABSTRACT

Nipah virus (NiV) is a highly pathogenic zoonotic virus with a broad species tropism, originating in pteropid bats. Human outbreaks of NiV disease occur almost annually, often with high case-fatality rates. The specific events that lead to pathogenesis are not well defined, but the disease has both respiratory and encephalitic components, with relapsing encephalitis occurring in some cases more than a year after initial infection. Several cell types are targets of NiV, dictated by the expression of the ephrin-B2/3 ligand on the cell's outer membrane, which interact with the NiV surface proteins. Vascular endothelial cells (ECs) are major targets of infection. Cytopathic effects (CPE), characterized by syncytia formation and cell death, and an ensuing vasculitis, are a major feature of the disease. Smooth muscle cells (SMCs) of the tunica media that line small blood vessels are infected in humans and animal models of NiV disease, although pathology or histologic changes associated with antigen-positive SMCs have not been reported. To gain an understanding of the possible contributions that SMCs might have in the development of NiV disease, we investigated the susceptibility and potential cytopathogenic changes of human SMCs to NiV infection in vitro. SMCs were permissive for NiV infection and resulted in high titers and prolonged NiV production, despite a lack of cytopathogenicity, and in the absence of detectable ephrin-B2/3. These results indicate that SMC might be important contributors to disease by producing progeny NiV during an infection, without suffering cytopathogenic consequences.


Subject(s)
Endothelial Cells , Henipavirus Infections , Myocytes, Smooth Muscle , Animals , Chlorocebus aethiops , Disease Susceptibility , Endothelial Cells/immunology , Endothelial Cells/virology , Henipavirus Infections/immunology , Henipavirus Infections/virology , Humans , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/virology , Nipah Virus , Vero Cells , Virus Replication
8.
J Infect Dis ; 224(10): 1641-1648, 2021 11 22.
Article in English | MEDLINE | ID: mdl-33822064

ABSTRACT

BACKGROUND: Our laboratory previously examined the influence of environmental conditions on the stability of an early isolate of SARS-CoV-2 (hCoV-19/USA/WA-1/2020) in aerosols generated from culture medium or simulated saliva. However, genetic differences have emerged among SARS-CoV-2 lineages, and it is possible that these differences may affect environmental stability and the potential for aerosol transmission. METHODS: The influence of temperature, relative humidity, and simulated sunlight on the decay of 4 SARS-CoV-2 isolates in aerosols, including 1 belonging to the recently emerged B.1.1.7 lineage, were compared in a rotating drum chamber. Aerosols were generated from simulated respiratory tract lining fluid to represent aerosols originating from the deep lung. RESULTS: No differences in the stability of the isolates were observed in the absence of simulated sunlight at either 20°C or 40°C. However, a small but statistically significant difference in the stability was observed between some isolates in simulated sunlight at 20°C and 20% relative humidity. CONCLUSIONS: The stability of SARS-CoV-2 in aerosols does not vary greatly among currently circulating lineages, including B.1.1.7, suggesting that the increased transmissibility associated with recent SARS-CoV-2 lineages is not due to enhanced survival in the environment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Humidity , Respiratory Aerosols and Droplets
9.
J Virol Methods ; 292: 114116, 2021 06.
Article in English | MEDLINE | ID: mdl-33689788

ABSTRACT

A variety of methods have been developed for quantification of infectious Ebola virus in clinical or laboratory samples, but existing methods often require extensive operator involvement, manual assay scoring, or the use of custom reagents. In this study, we utilize a recently developed Ebola-specific reporter cell line that expresses ZsGreen in response to Ebola virus infection, in conjunction with semi-automated processing and quantification techniques, to develop an unbiased, high-throughput microtitration assay for quantification of infectious Ebola virus in vitro. This assay was found to have equivalent sensitivity to a standardized plaque assay for quantifying viral titers. However, the new assay could be implemented with fewer reagents and processing steps, reduced subjectivity, and higher throughput. This assay may be useful for a variety of applications, particularly studies that require the detection or quantification of infectious Ebola virus in large numbers of samples.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Cell Line , Hemorrhagic Fever, Ebola/diagnosis , High-Throughput Screening Assays , Humans
10.
Environ Chem Lett ; 19(2): 1773-1777, 2021.
Article in English | MEDLINE | ID: mdl-33551702

ABSTRACT

In the absence of a vaccine, preventing the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the primary means to reduce the impact of the 2019 coronavirus disease (COVID-19). Multiple studies have reported the presence of SARS-CoV-2 genetic material on surfaces suggesting that fomite transmission of SARS-CoV-2 is feasible. High temperature inactivation of virus has been previously suggested, but not shown. In the present study, we investigated the environmental stability of SARS-CoV-2 in a clinically relevant matrix dried onto stainless steel at a high temperature. The results show that at 54.5 °C, the virus half-life was 10.8 ± 3.0 min and the time for a 90% decrease in infectivity was 35.4 ± 9.0 min. These findings suggest that in instances where the environment can reach temperatures of at least 54.5 °C, such as in vehicle interior cabins when parked in warmer ambient air, that the potential for exposure to infectious virus on surfaces could be decreased substantially in under an hour.

11.
Aerosol Sci Technol ; 55(2): 142-153, 2021.
Article in English | MEDLINE | ID: mdl-38077296

ABSTRACT

Recent evidence suggests that respiratory aerosols may play a role in the spread of SARS-CoV-2 during the ongoing COVID-19 pandemic. Our laboratory has previously demonstrated that simulated sunlight inactivated SARS-CoV-2 in aerosols and on surfaces. In the present study, we extend these findings to include the persistence of SARS-CoV-2 in aerosols across a range of temperature, humidity, and simulated sunlight levels using an environmentally controlled rotating drum aerosol chamber. The results demonstrate that temperature, simulated sunlight, and humidity are all significant factors influencing the persistence of infectious SARS-CoV-2 in aerosols, but that simulated sunlight and temperature have a greater influence on decay than humidity across the range of conditions tested. The time needed for a 90% decrease in infectious virus ranged from 4.8 min at 40 °C, 20% relative humidity, and high intensity simulated sunlight representative of noon on a clear day on the summer solstice at 4°N latitude, to greater than two hours under conditions representative of those expected indoors or at night. These results suggest that the persistence of infectious SARS-CoV-2 in naturally occurring aerosols may be affected by environmental conditions, and that aerosolized virus could remain infectious for extended periods of time under some environmental conditions. The present study provides a comprehensive dataset on the influence of environmental parameters on the survival of SARS-CoV-2 in aerosols that can be utilized, along with data on viral shedding from infected individuals and the inhalational infectious dose, to inform future modeling and risk assessment efforts.

12.
mSphere ; 5(4)2020 07 01.
Article in English | MEDLINE | ID: mdl-32611701

ABSTRACT

Coronavirus disease 2019 (COVID-19) was first identified in China in late 2019 and is caused by newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Previous studies had reported the stability of SARS-CoV-2 in cell culture media and deposited onto surfaces under a limited set of environmental conditions. Here, we broadly investigated the effects of relative humidity, temperature, and droplet size on the stability of SARS-CoV-2 in a simulated clinically relevant matrix dried on nonporous surfaces. The results show that SARS-CoV-2 decayed more rapidly when either humidity or temperature was increased but that droplet volume (1 to 50 µl) and surface type (stainless steel, plastic, or nitrile glove) did not significantly impact decay rate. At room temperature (24°C), virus half-life ranged from 6.3 to 18.6 h depending on the relative humidity but was reduced to 1.0 to 8.9 h when the temperature was increased to 35°C. These findings suggest that a potential for fomite transmission may persist for hours to days in indoor environments and have implications for assessment of the risk posed by surface contamination in indoor environments.IMPORTANCE Mitigating the transmission of SARS-CoV-2 in clinical settings and public spaces is critically important to reduce the number of COVID-19 cases while effective vaccines and therapeutics are under development. SARS-CoV-2 transmission is thought to primarily occur through direct person-to-person transfer of infectious respiratory droplets or through aerosol-generating medical procedures. However, contact with contaminated surfaces may also play a significant role. In this context, understanding the factors contributing to SARS-CoV-2 persistence on surfaces will enable a more accurate estimation of the risk of contact transmission and inform mitigation strategies. To this end, we have developed a simple mathematical model that can be used to estimate virus decay on nonporous surfaces under a range of conditions and which may be utilized operationally to identify indoor environments in which the virus is most persistent.


Subject(s)
Fomites/virology , Humidity , Models, Theoretical , Severe acute respiratory syndrome-related coronavirus/physiology , Temperature , Virus Inactivation , Air Pollution, Indoor , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Coronavirus Infections/virology , Half-Life , Humans , Pandemics/prevention & control , Plastics , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Porosity , Saliva/chemistry , Saliva/virology , Stainless Steel , Surface Properties
13.
J Infect Dis ; 222(4): 564-571, 2020 07 23.
Article in English | MEDLINE | ID: mdl-32525979

ABSTRACT

Aerosols represent a potential transmission route of COVID-19. This study examined effect of simulated sunlight, relative humidity, and suspension matrix on stability of SARS-CoV-2 in aerosols. Simulated sunlight and matrix significantly affected decay rate of the virus. Relative humidity alone did not affect the decay rate; however, minor interactions between relative humidity and other factors were observed. Mean decay rates (± SD) in simulated saliva, under simulated sunlight levels representative of late winter/early fall and summer were 0.121 ±â€…0.017 min-1 (90% loss, 19 minutes) and 0.306 ±â€…0.097 min-1 (90% loss, 8 minutes), respectively. Mean decay rate without simulated sunlight across all relative humidity levels was 0.008 ±â€…0.011 min-1 (90% loss, 286 minutes). These results suggest that the potential for aerosol transmission of SARS-CoV-2 may be dependent on environmental conditions, particularly sunlight. These data may be useful to inform mitigation strategies to minimize the potential for aerosol transmission.


Subject(s)
Air Microbiology , Betacoronavirus/radiation effects , Coronavirus Infections/transmission , Pneumonia, Viral/transmission , Sunlight , Aerosols , Animals , COVID-19 , Chlorocebus aethiops , Computer Simulation , Culture Media , Humidity , Hydrogen-Ion Concentration , Pandemics , Regression Analysis , SARS-CoV-2 , Saliva/chemistry , Saliva/virology , Vero Cells
14.
J Infect Dis ; 222(2): 214-222, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32432672

ABSTRACT

Previous studies have demonstrated that SARS-CoV-2 is stable on surfaces for extended periods under indoor conditions. In the present study, simulated sunlight rapidly inactivated SARS-CoV-2 suspended in either simulated saliva or culture media and dried on stainless steel coupons. Ninety percent of infectious virus was inactivated every 6.8 minutes in simulated saliva and every 14.3 minutes in culture media when exposed to simulated sunlight representative of the summer solstice at 40°N latitude at sea level on a clear day. Significant inactivation also occurred, albeit at a slower rate, under lower simulated sunlight levels. The present study provides the first evidence that sunlight may rapidly inactivate SARS-CoV-2 on surfaces, suggesting that persistence, and subsequently exposure risk, may vary significantly between indoor and outdoor environments. Additionally, these data indicate that natural sunlight may be effective as a disinfectant for contaminated nonporous materials.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Severe acute respiratory syndrome-related coronavirus , COVID-19 , Humans , SARS-CoV-2 , Sunlight
15.
Nat Rev Dis Primers ; 6(1): 13, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080199

ABSTRACT

Ebola virus disease (EVD) is a severe and frequently lethal disease caused by Ebola virus (EBOV). EVD outbreaks typically start from a single case of probable zoonotic transmission, followed by human-to-human transmission via direct contact or contact with infected bodily fluids or contaminated fomites. EVD has a high case-fatality rate; it is characterized by fever, gastrointestinal signs and multiple organ dysfunction syndrome. Diagnosis requires a combination of case definition and laboratory tests, typically real-time reverse transcription PCR to detect viral RNA or rapid diagnostic tests based on immunoassays to detect EBOV antigens. Recent advances in medical countermeasure research resulted in the recent approval of an EBOV-targeted vaccine by European and US regulatory agencies. The results of a randomized clinical trial of investigational therapeutics for EVD demonstrated survival benefits from two monoclonal antibody products targeting the EBOV membrane glycoprotein. New observations emerging from the unprecedented 2013-2016 Western African EVD outbreak (the largest in history) and the ongoing EVD outbreak in the Democratic Republic of the Congo have substantially improved the understanding of EVD and viral persistence in survivors of EVD, resulting in new strategies toward prevention of infection and optimization of clinical management, acute illness outcomes and attendance to the clinical care needs of patients.


Subject(s)
Hemorrhagic Fever, Ebola/complications , Hemorrhagic Fever, Ebola/physiopathology , Africa, Western/epidemiology , Ebolavirus/drug effects , Ebolavirus/pathogenicity , Hemorrhagic Fever, Ebola/epidemiology , Humans , Pandemics/prevention & control , Pandemics/statistics & numerical data
16.
J Gen Virol ; 100(6): 911-912, 2019 06.
Article in English | MEDLINE | ID: mdl-31021739

ABSTRACT

Members of the family Filoviridae produce variously shaped, often filamentous, enveloped virions containing linear non-segmented, negative-sense RNA genomes of 15-19 kb. Several filoviruses (e.g., Ebola virus) are pathogenic for humans and are highly virulent. Several filoviruses infect bats (e.g., Marburg virus), whereas the hosts of most other filoviruses are unknown. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on Filoviridae, which is available at www.ictv.global/report/filoviridae.


Subject(s)
Filoviridae/classification , Animals , Filoviridae/genetics , Genome, Viral/genetics , Humans , RNA, Viral/genetics
17.
Syst Biol ; 68(5): 828-839, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30597118

ABSTRACT

The International Committee on Taxonomy of Viruses (ICTV) is tasked with classifying viruses into taxa (phyla to species) and devising taxon names. Virus names and virus name abbreviations are currently not within the ICTV's official remit and are not regulated by an official entity. Many scientists, medical/veterinary professionals, and regulatory agencies do not address evolutionary questions nor are they concerned with the hierarchical organization of the viral world, and therefore, have limited use for ICTV-devised taxa. Instead, these professionals look to the ICTV as an expert point source that provides the most current taxonomic affiliations of viruses of interests to facilitate document writing. These needs are currently unmet as an ICTV-supported, easily searchable database that includes all published virus names and abbreviations linked to their taxa is not available. In addition, in stark contrast to other biological taxonomic frameworks, virus taxonomy currently permits individual species to have several members. Consequently, confusion emerges among those who are not aware of the difference between taxa and viruses, and because certain well-known viruses cannot be located in ICTV publications or be linked to their species. In addition, the number of duplicate names and abbreviations has increased dramatically in the literature. To solve this conundrum, the ICTV could mandate listing all viruses of established species and all reported unclassified viruses in forthcoming online ICTV Reports and create a searchable webpage using this information. The International Union of Microbiology Societies could also consider changing the mandate of the ICTV to include the nomenclature of all viruses in addition to taxon considerations. With such a mandate expansion, official virus names and virus name abbreviations could be catalogued and virus nomenclature could be standardized. As a result, the ICTV would become an even more useful resource for all stakeholders in virology.


Subject(s)
Classification/methods , Virology/methods , Viruses/classification , International Cooperation , Virology/standards , Virology/trends
18.
J Gen Virol ; 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30067171

ABSTRACT

Sin Nombre virus (SNV) and Andes virus (ANDV) cause hantavirus pulmonary syndrome (HPS) in humans. Both SNV and ANDV infect Syrian hamsters, but only ANDV causes lethal disease. A co-infection study was performed to determine which virus, SNV or ANDV, would dominate the survival outcome in hamsters. Infection of hamsters with SNV 1 day before ANDV challenge did not result in disease characteristic of the latter virus, and all animals survived challenge. Control animals infected solely with ANDV all succumbed by day 14. In contrast, when viruses were injected at the same site concurrently, all hamsters succumbed to HPS disease. Hantaviruses are segmented viruses; therefore we investigated which segment might be responsible for the protective phenotype of SNV by using two SNV/ANDV reassortant viruses, both with reciprocal M-segments from the other virus (denoted ASA and SAS). Both reassortants asymptomatically infect hamsters, similar to SNV. However, unlike SNV, 1 day prior preinfection with the reassortant virus did not prevent ANDV lethality. The ASA reassortant virus, but not SAS, protected hamsters from lethal ANDV infection when administered 3 days prior to ANDV challenge. Similar to SNV preinfection, the potent innate immune stimulator poly I:C administered to hamsters 1 day before ANDV challenge prevented lethal ANDV disease. Combined, these results suggest that the difference in pathogenicity of SNV and ANDV in hamsters involves differences in early host-pathogen interactions and resultant anti-viral immune responses of both the innate and adaptive immune system.

SELECTION OF CITATIONS
SEARCH DETAIL
...