Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BBA Clin ; 3: 107-12, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26673393

ABSTRACT

PURPOSE: The aim of this study is to explore whether a methylation diet influences risk for adenomatous polyps (AP) either independently, or interactively with one-carbon metabolism-dependent gene variants, and whether such a diet modifies blood homocysteine, a biochemical phenotype closely related to the phenomenon of methylation. METHODS: 249 subjects were examined using selective fluorescence, PCR and food frequency questionnaire to determine homocysteine, nine methylation-related gene polymorphisms, dietary methionine, 5-methyltetrahydrofolate, vitamins B6 and B12. RESULTS: 1). Both dietary methionine and 5-methyltetrahydrofolate intake are significantly associated with plasma homocysteine. 2). Dietary methionine is related to AP risk in 2R3R-TS wildtype subjects, while dietary B12 is similarly related to this phenotype in individuals heterozygous for C1420T-SHMT, A2756G-MS and 844ins68-CBS, and in those recessive for 2R3R-TS. 3). Dietary methionine has a marginal influence on plasma homocysteine level in C1420T-SHMT heterozygotes, while B6 exhibits the same effect on homocysteine in C776G-TCN2 homozygote recessive subjects. Natural 5-methyltetrahydrofolate intake is interesting: Wildtype A1298C-MTHFR, heterozygote C677T-MTHFR, wildtype A2756G-MS and recessive A66G-MSR individuals all show a significant reciprocal association with homocysteine. 4). Stepwise regression of all genotypes to predict risk for AP indicated A2756G-MS and A66G-MSR to be most relevant (p = 0.0176 and 0.0408 respectively). Results were corrected for age and gender. CONCLUSION: A methylation diet influences methyl group synthesis in the regulation of blood homocysteine level, and is modulated by genetic interactions. Methylation-related nutrients also interact with key genes to modify risk of AP, a precursor of colorectal cancer. Independent of diet, two methylation-related genes (A2756G-MS and A66G-MSR) were directly associated with AP occurrence.

2.
Asian Pac J Cancer Prev ; 16(10): 4383-6, 2015.
Article in English | MEDLINE | ID: mdl-26028103

ABSTRACT

BACKGROUND: The C1561T variant of the glutamate carboxypeptidase II (GCPII) gene is critical for natural methylfolylpolyglutamte (methylfolate) absorption, and has been associated with perturbations in folate metabolism and disease susceptibility. However, little is known on C1561T-GCPII as a risk factor for colorectal cancer. Therefore, this study examined whether C1561T-GCPII influences folate metabolism and adenomatous polyp occurrence. MATERIALS AND METHODS: 164 controls and 38 adenomatous polyp cases were analysed to determine blood folate and plasma homocysteine (Hcy) level, dietary intake of natural methylfolate, synthetic pteroylglutamic acid (PteGlu), vitamin C and C1561T-GCPII genotype. RESULTS: In controls and cases, 7.3 and 18.4 percent of subjects respectively, were found to have the CT genotype, increasing the risk for adenomatous polyp occurrence 2.86 times (95% CI:1.37-8.0, p=0.035). Total dietary folate, methylfolate and PteGlu intake and the level of erythrocyte folate and plasma Hcy did not predict the occurrence of an adenomatous polyp. However, dietary natural vitamin C intake was associated with adenomatous polyp risk within C1561T-GCPII CT genotype subjects (p=0.037). CONCLUSIONS: The findings suggest that C1561T-GCPII variation may be associated with risk for adenomatous polyp, and vitamin C may modify risk by interacting with the variant gene, its expression product and/or folate substrates.


Subject(s)
Adenomatous Polyps/genetics , Ascorbic Acid/administration & dosage , Colorectal Neoplasms/genetics , Folic Acid/blood , Glutamate Carboxypeptidase II/genetics , Vitamins/administration & dosage , Adult , Aged , Aged, 80 and over , Ascorbic Acid/metabolism , Case-Control Studies , Diet , Genotype , Glutamate Carboxypeptidase II/metabolism , Homocysteine/blood , Humans , Middle Aged , Polymorphism, Single Nucleotide , Pteroylpolyglutamic Acids/administration & dosage , Risk Factors , Tetrahydrofolates/administration & dosage , Vitamins/metabolism
3.
J Nutr Sci Vitaminol (Tokyo) ; 61(6): 455-9, 2015.
Article in English | MEDLINE | ID: mdl-26875486

ABSTRACT

Folate and related gene variants are significant risk factors in the aetiology of colorectal cancer. Dihydrofolate reductase (DHFR) is critical in the metabolism of synthetic folic acid (pteroylmonoglutamatamic, PteGlu) to tetrahydrofolate following absorption. Therefore, the 19bp deletion variant of DHFR may lead to the alteration of folate-related colorectal disease susceptibility. This study examined the association between PteGlu and 19bp del-DHFR, and adenomatous polyp (AP) occurrence, an antecedent of colorectal cancer. A total of 199 subjects (162 controls and 37 AP cases) were analysed to determine dietary intake of total folate, natural methylfolate and synthetic PteGlu, level of erythrocyte folate and plasma homocysteine (tHcy), and genotype of 19bp del-DHFR. Dietary folate intake, erythrocyte folate, tHcy and 19bp del-DHFR variants did not independently predict the occurrence of AP. However, a gene-nutrient interaction was observed when subjects were stratified according to dietary folate intake. In subjects with a folate intake above the median value due to significant dietary PteGlu content, the presence of the 19bp-deletion allele decreased the risk for AP (OR=0.35, 95% CI: 0.13-0.97). However, such association was not evident in individuals with a folate intake below the median value. In conclusion, the finding suggests that folate nutrition and 19bp del-DHFR variation may interact to modify AP risk.


Subject(s)
Adenomatous Polyps/etiology , Colorectal Neoplasms/etiology , Diet , Folic Acid/pharmacology , Genotype , Nutritional Status , Tetrahydrofolate Dehydrogenase/genetics , Adenomatous Polyps/genetics , Adenomatous Polyps/metabolism , Aged , Alleles , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Epigenesis, Genetic , Female , Folic Acid/administration & dosage , Folic Acid/blood , Humans , Male , Middle Aged , Polymorphism, Genetic , Risk Factors , Tetrahydrofolate Dehydrogenase/metabolism , Tetrahydrofolates/metabolism
4.
Eur J Nutr ; 52(2): 569-82, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22527288

ABSTRACT

PURPOSE: Folate-related nutrient-nutrient and nutrient-gene interactions modify disease risk; we therefore examined synergistic relationships between dietary folic acid, vitamin C and variant folate genes with respect to red cell folate status. METHODS: Two hundred and twelve subjects were examined using chemiluminescent immunoassay, PCR and food frequency questionnaire to determine red cell and serum folate, 14 folate gene polymorphisms, dietary folate (natural and synthetic) and vitamin C. RESULTS: When examined independently, synthetic PteGlu correlates best with red cell folate at higher levels of intake (p = 0.0102), while natural 5CH(3)-H(4)-PteGlu(n) correlates best with red cell folate at lower levels of intake (p = 0.0035). However, dietary vitamin C and 5CH(3)-H(4)-PteGlu(n) interact synergistically to correlate with red cell folate at higher levels of intake (p = 0.0005). No interaction between dietary vitamin C and PteGlu was observed. This 'natural' nutrient-nutrient interaction may provide an alternative to synthetic PteGlu supplementation that is now linked to adverse phenomena/health outcomes. On its own, vitamin C also correlates with red cell folate (p = 0.0150) and is strongly influenced by genetic variation in TS, MTHFR and MSR, genes critical for DNA and methionine biosynthesis that underpin erythropoiesis. Similarly, dietary vitamin C and 5CH(3)-H(4)-PteGlu(n) act synergistically to modify red cell folate status according to variation in folate genes: of note, heterozygosity for 2R3R-TS (p = 0.0181), SHMT (p = 0.0046) and all three MTHFR SNPs (p = 0.0023, 0.0015 and 0.0239 for G1793A, C677T and A1298C variants, respectively) promote a significant association with red cell folate. Again, all these genes are critical for nucleic acid biosynthesis. Folate variants with the strongest independent effect on folate status were C677T-MTHFR (p = 0.0004) and G1793A-MTHFR (p = 0.0173). CONCLUSIONS: 5CH(3)-H(4)-PteGlu(n) assimilation and variant folate gene expression products may be critically dependent on dietary vitamin C.


Subject(s)
Ascorbic Acid/blood , Dietary Supplements , Folic Acid/blood , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Nutritional Status , Adolescent , Adult , Aged , Aged, 80 and over , Ascorbic Acid/administration & dosage , Diet , Female , Folic Acid/administration & dosage , Food-Drug Interactions , Gene Expression Regulation , Genotype , Humans , Male , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , Surveys and Questionnaires , Young Adult
5.
Food Funct ; 2(8): 457-65, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21769326

ABSTRACT

Taste perception may influence dietary preferences and nutrient intakes contributing to diet-related disease susceptibility. This study examined bitter taste genetics and whether variation in the TAS2R38 gene at three polymorphic loci (A49P, V262A and I296V) could alter dietary and systemic folate levels and dietary vitamin C intake, and whether a nutrigenetic circuit existed that might link bitter taste, folate/antioxidant status and risk for a colonic adenomatous polyp. TAS2R38 diplotype predicted bitter taste (PROP) phenotype (p value <0.00001) and red cell folate status (p=0.0179) consistent with the diplotype that has the broadest range of bitter perception (AVI/PAV) also possessing the highest average red cell folate value. However, TAS2R38 diplotype did not predict dietary intake of methylfolic acid, pteroylmonoglutamic acid or total folic acid. Neither did it predict dietary intake of vitamin C. Despite this, intake of dietary folate predicts red cell folate with analysis pointing to a key nutrient-nutrient interaction between vitamin C intake and systemic folate status. Analysis of 38 patients with an adenomatous polyp and 164 controls showed that individually, dietary nutrient intake, nutrient status and taste diplotype did not influence polyp risk. However, red cell folate status (in individuals below the population median value) did interact with bitter taste diplotype (AVI/PAV) to predict polyp risk (p=0.0145). Furthermore, synthetic folic acid (below median intake) was statistically associated with adenoma occurrence (p=0.0215); individuals with adenomatous polyps had a 1.77× higher intake than controls. Additionally, stepwise regression taking account of all dietary nutrients showed a tight relationship between methylfolic acid (but not pteroylmonoglutamic acid) intake and red cell folate level in those with a low folate status and occurrence of an adenomatous polyp (p=0.0039). These findings point to a role for folate in the pathoaetiology of adenomatous polyps, with the natural and synthetic vitamers not necessarily having the same biological effect.


Subject(s)
Adenomatous Polyposis Coli/genetics , Ascorbic Acid/administration & dosage , Diet , Folic Acid/administration & dosage , Receptors, G-Protein-Coupled/genetics , Taste Perception/genetics , Adenomatous Polyposis Coli/etiology , Adult , Aged , Aged, 80 and over , Erythrocytes/chemistry , Folic Acid/blood , Folic Acid Deficiency/complications , Genetic Variation , Genotype , Humans , Middle Aged , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...