Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 20(3): 2106-2112, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32765684

ABSTRACT

Sufficient stabilization of comminuted mid-shaft clavicle fractures via plate fixation is difficult to achieve. Various augmentations, including interfragmentary screws and cerclage wiring, have been adopted to reinforce fixation stability. The present study aimed to assess the biomechanical stability of augmented plate fixations using the finite element method. First, a clavicle fracture model was created from CT data. Fixation was then induced using a locking compressive plate (LCP) with the following four augmentations: i) Double inner cerclage wirings (DICW), ii) double outer cerclage wirings (DOCW), iii) a single interfragmentary screw (SIS) and iv) double interfragmentary screws (DIS). Compressive and bending forces of 100 N were subsequently applied at the acromial region of the clavicle. The stress distribution, displacement and fracture micro-motions of the model were assessed and compared. The DOCW resulted in the highest stress exerted on the LCP, followed by SIS, DICW and DIS. For the clavicle fracture, DICW, DOCW and SIS resulted in high stress levels. However, DIS fixation alone resulted in levels of stress that were below the yield strength of cortical bone. Displacement analysis revealed that DOCW fixation resulted in the greatest degree of displacement and fracture micro-motions, followed by SIS, DICW and DIS. The results indicated that SIS, DIS and DOCW may be used as augmentations of LCP fixation for comminuted mid-shaft clavicle fractures. However, DIS was the recommended augmentation due to it exerting the lowest stress and the highest stability compared with the other fixations. The DICW may be used to aid fracture reduction and plate placement in surgery but should be avoided for permanent fixation.

2.
J Biomech ; 48(12): 3142-8, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26243661

ABSTRACT

First metatarsocuneiform arthrodesis is one of the surgical interventions to correct hallux valgus, especially those with hypermobile first ray. There is lacking of biomechanical investigations to assess this operation. The objective of this study was to explore the functional restoration and the risk of non-union after the surgery via finite element analysis. A three-dimensional foot model was constructed from a female aged 28 via magnetic resonance imaging. Thirty bones and encapsulated bulk tissue were modeled. Walking stance was simulated by the gait analysis data of the same participant. Parts of the first metatarsal and cuneiform were resected and the bone graft was assigned with the same stiffness as adjacent bones to resemble the surgery of first metatarsocuneiform arthrodesis. The third principal stress of the first metatarsal at midstance (25% stance) and push off (60% stance) was increased by 76% and 139% respectively after the operation, while that of the second metatarsal was decreased by 14% and 66%. The operation reduced the medial deviation of the first metatarsal head by about 3.5mm during initial push off (60% stance). Besides, the bone graft could experience tensile stress inferiorly (26.51MPa). In conclusion, the increase of stress on the first metatarsal and the reduced medial excursion of the first metatarsal head after the simulated operation reflected that metatarsocuneiform arthrodesis could restore the load-bearing function of the first ray. However, inter-fragmentary compression could not be guaranteed. The appropriate course of hardware and non-weight-bearing protocol should be noted and further investigated.


Subject(s)
Arthrodesis/adverse effects , Arthrodesis/methods , Finite Element Analysis , Hallux Valgus/physiopathology , Hallux Valgus/surgery , Metatarsal Bones/surgery , Recovery of Function , Adult , Biomechanical Phenomena , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Metatarsal Bones/physiopathology , Risk , Stress, Mechanical , Walking , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...