Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 271: 116450, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38701714

ABSTRACT

The complexity and multifaceted nature of Alzheimer's disease (AD) have driven us to further explore quinazoline scaffolds as multi-targeting agents for AD treatment. The lead optimization strategy was utilized in designing of new series of derivatives (AK-1 to AK-14) followed by synthesis, characterization, and pharmacological evaluation against human cholinesterase's (hChE) and ß-secretase (hBACE-1) enzymes. Amongst them, compounds AK-1, AK-2, and AK-3 showed good and significant inhibitory activity against both hAChE and hBACE-1 enzymes with favorable permeation across the blood-brain barrier. The most active compound AK-2 revealed significant propidium iodide (PI) displacement from the AChE-PAS region and was non-neurotoxic against SH-SY5Y cell lines. The lead molecule (AK-2) also showed Aß aggregation inhibition in a self- and AChE-induced Aß aggregation, Thioflavin-T assay. Further, compound AK-2 significantly ameliorated Aß-induced cognitive deficits in the Aß-induced Morris water maze rat model and demonstrated a significant rescue in eye phenotype in the Aꞵ-phenotypic drosophila model of AD. Ex-vivo immunohistochemistry (IHC) analysis on hippocampal rat brains showed reduced Aß and BACE-1 protein levels. Compound AK-2 suggested good oral absorption via pharmacokinetic studies and displayed a good and stable ligand-protein interaction in in-silico molecular modeling analysis. Thus, the compound AK-2 can be regarded as a lead molecule and should be investigated further for the treatment of AD.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Cholinesterase Inhibitors , Drug Design , Quinazolines , Quinazolines/pharmacology , Quinazolines/chemical synthesis , Quinazolines/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Rats , Structure-Activity Relationship , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Molecular Structure , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Dose-Response Relationship, Drug , Butyrylcholinesterase/metabolism , Male
2.
ACS Omega ; 9(16): 18169-18182, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680351

ABSTRACT

Alzheimer's disease (AD) is a multifactorial and emerging neurological disorder, which has invoked researchers to develop multitargeted ligands. Herein, hybrid conjugates of 5-phenyl-1,3,4-oxadiazole and piperazines were rationally designed, synthesized, and pharmacologically evaluated against hAChE, hBChE, and hBACE-1 enzymes for the management of AD. Among the series, compound 5AD comprising pyridyl substitution at terminal nitrogen of piperazine contemplated as a paramount lead compound (hAChE, IC50 = 0.103 ± 0.0172 µM, hBChE, IC50 ≥ 10 µM, and hBACE-1, IC50 = 1.342 ± 0.078 µM). Compound 5AD showed mixed-type enzyme inhibition in enzyme kinetic studies against the hAChE enzyme. In addition, compound 5AD revealed a significant displacement of propidium iodide from the peripheral anionic site (PAS) of hAChE and excellent blood-brain barrier (BBB) permeability in a parallel artificial membrane permeation assay (PAMPA). Besides, 5AD also exhibited anti-Aß aggregation activity in self- and AChE-induced thioflavin T assay. Further, compound 5AD has shown significant improvement in learning and memory (p < 0.001) against the in vivo scopolamine-induced cognitive dysfunction mice model. The ex vivo study implied that after treatment with compound 5AD, there was a decrease in AChE and malonaldehyde (MDA) levels with an increase in catalase (CAT, oxidative biomarkers) in the hippocampal brain homogenate. Hence, compound 5AD could be regarded as a lead compound and further be explored in the treatment of AD.

3.
Eur J Med Chem ; 271: 116409, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38663285

ABSTRACT

Inspite of established symptomatic relief drug targets, a multi targeting approach is highly in demand to cure Alzheimer's disease (AD). Simultaneous inhibition of cholinesterase (ChE), ß secretase-1 (BACE-1) and Dyrk1A could be promising in complete cure of AD. A series of 18 diaryl triazine based molecular hybrids were successfully designed, synthesized, and tested for their hChE, hBACE-1, Dyrk1A and Aß aggregation inhibitory potentials. Compounds S-11 and S-12 were the representative molecules amongst the series with multi-targeted inhibitory effects. Compound S-12 showed hAChE inhibition (IC50 value = 0.486 ± 0.047 µM), BACE-1 inhibition (IC50 value = 0.542 ± 0.099 µM) along with good anti-Aß aggregation effects in thioflavin-T assay. Only compound S-02 of the series has shown Dyrk1A inhibition (IC50 value = 2.000 ± 0.360 µM). Compound S-12 has also demonstrated no neurotoxic liabilities against SH-SY5Y as compared to donepezil. The in vivo behavioral studies of the compound S-12 in the scopolamine- and Aß-induced animal models also demonstrated attanuation of learning and memory functions in rats models having AD-like characteristics. The ex vivo studies, on the rat hippocampal brain demonstrated reduction in certain biochemical markers of the AD brain with a significant increase in ACh level. The Western blot and Immunohistochemistry further revealed lower tau, APP and BACE-1 molecular levels. The drosophilla AD model also revealed improved eyephenotype after treatment with compound S-12. The molecular docking studies of the compounds suggested that compound S-12 was interacting with the ChE-PAS & CAS residues and catalytic dyad residues of the BACE-1 enzymes. The 100 ns molecular dynamics simulation studies of the ligand-protein complexed with hAChE and hBACE-1 also suggested stable ligand-protein confirmation throughout the simulation run.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Amyloid Precursor Protein Secretases , Cholinesterase Inhibitors , Drug Design , Triazines , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Rats , Structure-Activity Relationship , Acetylcholinesterase/metabolism , Triazines/chemistry , Triazines/pharmacology , Triazines/chemical synthesis , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Molecular Structure , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Molecular Docking Simulation , Dyrk Kinases , Dose-Response Relationship, Drug , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Male , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Butyrylcholinesterase/metabolism
4.
ACS Chem Neurosci ; 15(4): 745-771, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38327209

ABSTRACT

An efficient and promising method of treating complex neurodegenerative diseases like Alzheimer's disease (AD) is the multitarget-directed approach. Here in this work, a series of quinazoline derivatives (AV-1 to AV-21) were rationally designed, synthesized, and biologically evaluated as multitargeted directed ligands against human cholinesterase (hChE) and human ß-secretase (hBACE-1) that exhibit moderate to good inhibitory effects. Compounds AV-1, AV-2, and AV-3 from the series demonstrated balanced and significant inhibition against these targets. These compounds also displayed excellent blood-brain barrier permeability via the PAMPA-BBB assay. Compound AV-2 significantly displaced propidium iodide (PI) from the acetylcholinesterase-peripheral anionic site (AChE-PAS) and was found to be non-neurotoxic at the maximum tested concentration (80 µM) against differentiated SH-SY5Y cell lines. Compound AV-2 also prevented AChE- and self-induced Aß aggregation in the thioflavin T assay. Additionally, compound AV-2 significantly ameliorated scopolamine and Aß-induced cognitive impairments in the in vivo behavioral Y-maze and Morris water maze studies, respectively. The ex vivo and biochemical analysis further revealed good hippocampal AChE inhibition and the antioxidant potential of the compound AV-2. Western blot and immunohistochemical (IHC) analysis of hippocampal brain revealed reduced Aß, BACE-1, APP/Aß, and Tau molecular protein expressions levels. The pharmacokinetic analysis of compound AV-2 demonstrated significant oral absorption with good bioavailability. The in silico molecular modeling studies of lead compound AV-2 moreover demonstrated a reasonable binding profile with AChE and BACE-1 enzymes and stable ligand-protein complexes throughout the 100 ns run. Compound AV-2 can be regarded as the lead candidate and could be explored more for AD therapy.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Alzheimer Disease/metabolism , Acetylcholinesterase/metabolism , Structure-Activity Relationship , Cholinesterase Inhibitors/chemistry , Drug Design , Amyloid beta-Peptides/metabolism , Molecular Docking Simulation
5.
Bioorg Chem ; 139: 106749, 2023 10.
Article in English | MEDLINE | ID: mdl-37517157

ABSTRACT

Our present work demonstrates the molecular hybridization-assisted design, synthesis, and biological evaluation of 22 benzylpiperazine-linked 1,2,4-triazole compounds (PD1-22) as AD modifying agents. All the compounds were tested for their in vitro hChEs, hBACE-1, and Aß-aggregation inhibition properties. Among them, compound PD-08 and PD-22 demonstrated good hChE and hBACE-1 inhibition as compared to standards donepezil and rivastigmine. Both compounds displaced PI from PAS at 50 µM concentration which was comparable to donepezil and also demonstrated anti-Aß aggregation properties in self- and AChE-induced thioflavin T assay. Both compounds have shown excellent BBB permeation via PAMPA-BBB assay and were found to be non-neurotoxic at 80 µM concentration against differentiated SH-SY5Y cell lines. Compound PD-22 demonstrated an increase in rescued eye phenotype in Aß-phenotypic drosophila AD model and amelioration of behavioral deficits in the Aß-induced rat model of AD. The in-silico docking studies of compound PD-22 revealed a good binding profile towards CAS and PAS residues of AChE and the catalytic dyad of the BACE-1. The 100 ns molecular dynamics simulation studies of compound PD-22 complexed with AChE and BACE-1 enzymes suggested stable ligand-protein complex throughout the simulation run. Based on our findings compound PD-22 could further be utilized as a lead to design a promising candidate for AD therapy.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Rats , Animals , Alzheimer Disease/metabolism , Donepezil/pharmacology , Thiones , Molecular Docking Simulation , Piperazines/pharmacology , Molecular Dynamics Simulation , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Amyloid beta-Peptides/metabolism , Drug Design , Structure-Activity Relationship
6.
ACS Chem Neurosci ; 14(11): 2217-2242, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37216500

ABSTRACT

Our present work demonstrates the successful design and synthesis of a new class of compounds based upon a multitargeted directed ligand design approach to discover new agents for use in Alzheimer's disease (AD). All the compounds were tested for their in vitro inhibitory potential against human acetylcholinesterase (hAChE), human butylcholinesterase (hBChE), ß-secretase-1 (hBACE-1), and amyloid ß (Aß) aggregation. Compounds 5d and 5f have shown hAChE and hBACE-1 inhibition comparable to donepezil, while hBChE inhibition was comparable to rivastigmine. Compounds 5d and 5f also demonstrated a significant reduction in the formation of Aß aggregates through the thioflavin T assay and confocal, atomic force, and scanning electron microscopy studies and significantly displaced the total propidium iodide, that is, 54 and 51% at 50 µM concentrations, respectively. Compounds 5d and 5f were devoid of neurotoxic liabilities against RA/BDNF (RA = retinoic acid; BDNF = brain-derived neurotrophic factor)-differentiated SH-SY5Y neuroblastoma cell lines at 10-80 µM concentrations. In both the scopolamine- and Aß-induced mouse models for AD, compounds 5d and 5f demonstrated significant restoration of learning and memory behaviors. A series of ex vivo studies of hippocampal and cortex brain homogenates showed that 5d and 5f elicit decreases in AChE, malondialdehyde, and nitric oxide levels, an increase in glutathione level, and reduced levels of pro-inflammatory cytokines, tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) mRNA. The histopathological examination of mice revealed normal neuronal appearance in the hippocampal and cortex regions of the brain. Western blot analysis of the same tissue indicated a reduction in Aß, amyloid precursor protein (APP)/Aß, BACE-1, and tau protein levels, which were non-significant compared to the sham group. The immunohistochemical analysis also showed significantly lower expression of BACE-1 and Aß levels, which was comparable to donepezil-treated group. Compounds 5d and 5f represent new lead candidates for developing AD therapeutics.


Subject(s)
Alzheimer Disease , Neuroblastoma , Humans , Mice , Animals , Alzheimer Disease/metabolism , Donepezil/pharmacology , Amyloid beta-Peptides/metabolism , Ligands , Brain-Derived Neurotrophic Factor , Piperazine , Acetylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Structure-Activity Relationship
7.
ACS Omega ; 8(10): 9394-9414, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36936338

ABSTRACT

A series of some novel compounds (SD-1-17) were designed following a molecular hybridization approach, synthesized, and biologically tested for hAChE, hBChE, hBACE-1, and Aß aggregation inhibition potential to improve cognition and memory functions associated with Alzheimer's disease. Compounds SD-4 and SD-6 have shown multifunctional inhibitory profiles against hAChE, hBChE, and hBACE-1 enzymes in vitro. Compounds SD-4 and SD-6 have also shown anti-Aß aggregation potential in self- and acetylcholinesterase (AChE)-induced thioflavin T assay. Both compounds have shown a significant propidium iodide (PI) displacement from the cholinesterase-peripheral active site (ChE-PAS) region with excellent blood-brain barrier (BBB) permeability and devoid of neurotoxic liabilities. Compound SD-6 ameliorates cognition and memory functions in scopolamine- and Aß-induced behavioral rat models of Alzheimer's disease (AD). Ex vivo biochemical estimation revealed a significant decrease in malonaldehyde (MDA) and AChE levels, while a substantial increase of superoxide dismutase (SOD), catalase, glutathione (GSH), and ACh levels is seen in the hippocampal brain homogenates. The histopathological examination of brain slices also revealed no sign of neuronal or any tissue damage in the SD-6-treated experimental animals. The in silico molecular docking results of compounds SD-4 and SD-6 showed their binding with hChE-catalytic anionic site (CAS), PAS, and the catalytic dyad residues of the hBACE-1 enzymes. A 100 ns molecular dynamic simulation study of both compounds with ChE and hBACE-1 enzymes also confirmed the ligand-protein complex's stability, while quikprop analysis suggested drug-like properties of the compounds.

8.
Molecules ; 26(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34361570

ABSTRACT

A novel series of 4-anilinoquinazoline analogues, DW (1-10), were evaluated for anticancer efficacy in human breast cancer (BT-20) and human colorectal cancer (CRC) cell lines (HCT116, HT29, and SW620). The compound, DW-8, had the highest anticancer efficacy and selectivity in the colorectal cancer cell lines, HCT116, HT29, and SW620, with IC50 values of 8.50 ± 2.53 µM, 5.80 ± 0.92 µM, and 6.15 ± 0.37 µM, respectively, compared to the non-cancerous colon cell line, CRL1459, with an IC50 of 14.05 ± 0.37 µM. The selectivity index of DW-8 was >2-fold in colon cancer cells incubated with vehicle. We further determined the mechanisms of cell death induced by DW-8 in SW620 CRC cancer cells. DW-8 (10 and 30 µM) induced apoptosis by (1) producing cell cycle arrest at the G2 phase; (2) activating the intrinsic apoptotic pathway, as indicated by the activation of caspase-9 and the executioner caspases-3 and 7; (3) nuclear fragmentation and (4) increasing the levels of reactive oxygen species (ROS). Overall, our results suggest that DW-8 may represent a suitable lead for developing novel compounds to treat CRC.


Subject(s)
Apoptosis/drug effects , Colonic Neoplasms , G2 Phase Cell Cycle Checkpoints/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , HT29 Cells , Humans
9.
Bioorg Med Chem Lett ; 27(12): 2663-2667, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28487075

ABSTRACT

Described herein is the design, synthesis and biological evaluation of a series of N-(1H-pyrazol-3-yl)quinazolin-4-amines against a panel of eight disease relevant protein kinases. The kinase inhibition results indicated that two compounds inhibited casein kinase 1δ/ε (CK1δ/ε) with some selectivity over related kinases, namely CDK5/p25, GSK-3α/ß, and DYRK1A. Docking studies with 3c and 3d revealed the key interactions with desired amino acids in the ATP binding site of CK1δ. Furthermore, compound 3c also elicited selective cytotoxic activity against the pancreas ductal adenocarcinoma (PANC-1) cell line. Taken together, the results of this study establish N-(1H-pyrazol-3-yl)quinazolin-4-amines especially 3c and 3d as valuable lead molecules with great potential for CK1δ/ε inhibitor development targeting neurodegenerative disorders and cancer.


Subject(s)
Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase Idelta/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Quinazolines/pharmacology , Casein Kinase 1 epsilon/metabolism , Casein Kinase Idelta/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
10.
Curr Drug Targets ; 15(5): 539-50, 2014 May.
Article in English | MEDLINE | ID: mdl-24568585

ABSTRACT

The cdc2-like kinases (CLKs) are an evolutionarily conserved group of dual specificity kinases belonging to the CMGC (cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAP kinases), glycogen synthase kinases (GSK) and CDK-like kinases). The CLK family consists of four isoforms namely CLK1, CLK2, CLK3 and CLK4. The human CLK1 encoded protein comprises 454 amino acids and the catalytic domain of CLK1 exhibits the typical protein kinase fold. CLK1 has been shown to autophosphorylate on serine, threonine and tyrosine residues and phosphorylate exogenous substrates on serine and threonine residues. CLK1 plays an important role in the regulation of RNA splicing through phosphorylation of members of the serine and arginine-rich (SR) family of splicing factors. CLK1 is involved in the pathophysiology of Alzheimer's disease by phosphorylating the serine residue in SR proteins. Nuclear speckles of the nucleoplasm contain the stored form of SR proteins and are moderately responsible for the choice of splicing sites during pre-mRNA splicing. Hence, the inhibition of CLK1 can be used as a therapeutic strategy for Alzheimer's disease. Many natural and synthetic molecules are reported to possess CLK1 inhibitory activity. Some specific examples are Marine alkaloid Leucettamine B and KH-CB19. Leucettamine B is a potent inhibitor of CLK1 (15 nM), Dyrk1A (40 nM), and Dyrk2 (35 nM) and a moderate inhibitor of CLK3 (4.5 µM) whereas KH-CB19 is a highly specific and potent inhibitor of the CLK1/CLK4. X-ray crystallographic studies have revealed the binding mode of marine sponge metabolite hymenialdisine and a dichloroindolyl enamino nitrile (KH-CB19) to CLK1. This review focuses on the role of CLKs in the pathophysiology of Alzheimer's disease and therapeutic potential of targeting CLK1 in Alzheimer's disease drug discovery and development. In addition, the recent developments in drug discovery efforts targeting human CLK1 are also highlighted.


Subject(s)
Alzheimer Disease/drug therapy , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Animals , Humans , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , tau Proteins/metabolism
11.
Bioorg Med Chem ; 22(6): 1909-15, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24530227

ABSTRACT

A series of novel 4-anilinoquinazoline derivatives (3a-3j) has been synthesized and evaluated as potential inhibitors for protein kinases implicated in Alzheimer's disease. Among all the synthesized compounds, compound 3e (N-(3,4-dimethoxyphenyl)-6,7-dimethoxyquinazolin-4-amine) exhibited the most potent inhibitory activity against CLK1 and GSK-3α/ß kinase with IC50 values of 1.5 µM and 3 µM, respectively. Docking studies were performed to elucidate the binding mode of the compounds to the active site of CLK1 and GSK-3ß. The results of our study suggest that compound 3e may serve as a valuable template for the design and development of dual inhibitors of CLK1 and GSK-3α/ß enzymes with potential therapeutic application in Alzheimer's disease.


Subject(s)
Aniline Compounds/pharmacology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/antagonists & inhibitors , Quinazolines/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3/metabolism , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Quinazolines/chemical synthesis , Quinazolines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...