Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(6): 1367-1375, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36735638

ABSTRACT

Rare-earth metals (REMs) are crucial for many important industries, such as power generation and storage, in addition to cancer treatment and medical imaging. One promising new REM refinement approach involves mimicking the highly selective and efficient binding of REMs observed in relatively recently discovered proteins. However, realizing any such bioinspired approach requires an understanding of the biological recognition mechanisms. Here, we developed a new classical polarizable force field based on the AMOEBA framework for modeling a lanthanum ion (La3+) interacting with water, acetate, and acetamide, which have been found to coordinate the ion in proteins. The parameters were derived by comparing to high-level ab initio quantum mechanical (QM) calculations that include relativistic effects. The AMOEBA model, with advanced atomic multipoles and electronic polarization, is successful in capturing both the QM distance-dependent La3+-ligand interaction energies and experimental hydration free energy. A new scheme for pairwise polarization damping (POLPAIR) was developed to describe the polarization energy in La3+ interactions with both charged and neutral ligands. Simulations of La3+ in water showed water coordination numbers and ion-water distances consistent with previous experimental and theoretical findings. Water residence time analysis revealed both fast and slow kinetics in water exchange around the ion. This new model will allow investigation of fully solvated lanthanum ion-protein systems using GPU-accelerated dynamics simulations to gain insights on binding selectivity, which may be applied to the design of synthetic analogues.

2.
J Phys Chem A ; 122(31): 6355-6359, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30062895

ABSTRACT

We investigated the reaction rates of OH + CO → H + CO2 in supercritical CO2 environment with and without additional CO2 molecule included in reactive complex. Ab initio potential energy surfaces previously reported a lower activation barrier and hence a catalytic effect of additional CO2 molecule. Here we solve the steady-state unimolecular master equations based on the Rice-Ramsperger-Kassel-Marcus theory (RRKM) and compare the rates for the two mechanisms. We found that the alternative reaction mechanism becomes faster at high pressure and low temperature, when the concentration of prereactive complex with additional CO2 molecule becomes appreciable. Therefore, this catalytic effect may be important for the chemical processes in CO2 solvent but is unlikely to play a role during combustion.

3.
J Phys Chem A ; 121(19): 3728-3735, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28471684

ABSTRACT

In oxy-fuel combustion, the pure oxygen (O2), diluted with CO2 is used as oxidant instead air. Hence, the combustion products (CO2 and H2O) are free from pollution by nitrogen oxides. Moreover, high pressures result in the near-liquid density of CO2 at supercritical state (sCO2). Unfortunately, the effects of sCO2 on the combustion kinetics are far from being understood. To assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of the carbon dioxide molecule. All transition states and reactant and product complexes are reported for three reactions: H2CO + HO2 → HCO + H2O2 (R1), 2HO2 → H2O2 + O2 (R2), and CO + OH → CO2 + H (R3). In reaction R3, covalent binding of CO2 to the OH radical and then the CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to the bimolecular OH + CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol and is expected to accelerate the reaction. In the case of hydroperoxyl self-reaction 2HO2 → H2O2 + O2 the intermediates, containing covalent bonds to CO2 are found not to be competitive. However, the spectator CO2 molecule can stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates is also discovered in the H2CO + HO2 → HCO + H2O2 reaction, but these species lead to substantially higher activation barriers, which makes them unlikely to play a role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilizes the transition state and reduces the reaction barrier. These results indicate that the CO2 environment is likely to have a catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...