Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(14): 8224-8232, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-35497871

ABSTRACT

Nanocrystalline diamond (NCD) films grown on Si substrates by microwave plasma enhanced chemical vapor deposition (MWPECVD) were subjected to Ni-mediated graphitization to cover them with a conductive layer. Results of transmission electron microscopy including electron energy-loss spectroscopy of cross-sectional samples demonstrate that the oxide layer on Si substrates (∼5 nm native SiO2) has been damaged by microwave plasma during the early stage of NCD growth. During the heat treatment for graphitizing the NCD layer, the permeability or absence of the oxide barrier allow Ni nanoparticles to diffuse into the Si substrate and cause additional solid-state reactions producing pyramidal crystals of NiSi2 and SiC nanocrystals. The latter are found impinged into the NiSi2 pyramids but only when the interfacial oxide layer is absent, replaced by amorphous SiC. The complex phase morphology of the samples is also reflected in the temperature dependence of electrical conductivity, where multiple pathways of the electronic transport dominate in different temperature regions. We present models explaining the observed cascade of solid-state reactions and resulting electronic transport properties of such heterostructures.

2.
ACS Nano ; 13(4): 4621-4630, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30883098

ABSTRACT

Aberration-corrected transmission electron microscopy of the atomic structure of diamond-graphite interface after Ni-induced catalytic transformation reveals graphitic planes bound covalently to the diamond in the upright orientation. The covalent attachment, together with a significant volume expansion of graphite transformed from diamond, gives rise to uniaxial stress that is released through plastic deformation. We propose a comprehensive model explaining the Ni-mediated transformation of diamond to graphite and covalent bonding at the interface as well as the mechanism of relaxation of uniaxial stress. We also explain the mechanism of electrical transport through the graphitized surface of diamond. The result may thus provide a foundation for the catalytically driven formation of graphene-diamond nanodevices.

3.
J Mech Behav Biomed Mater ; 62: 93-105, 2016 09.
Article in English | MEDLINE | ID: mdl-27179768

ABSTRACT

Biocompatible ß Ti-45Nb (wt%) alloys were subjected to different methods of severe plastic deformation (SPD) in order to increase the mechanical strength without increasing the low Young׳s modulus thus avoiding the stress shielding effect. The mechanical properties, microstructural changes and texture evolution were investigated, by means of tensile, microhardness and nanoindentation tests, as well as TEM and XRD. Significant increases of hardness and ultimate tensile strength up to a factor 1.6 and 2, respectively, could be achieved depending on the SPD method applied (hydrostatic extrusion - HE, high pressure torsion - HPT, and rolling and folding - R&F), while maintaining the considerable ductility. Due to the high content of ß-stabilizing Nb, the initial lattice structure turned out to be stable upon all of the SPD methods applied. This explains why with all SPD methods the apparent Young׳s modulus measured by nanoindentation did not exceed that of the non-processed material. For its variations below that level, they could be quantitatively related to changes in the SPD-induced texture, by means of calculations of the Young׳s modulus on basis of the texture data which were carefully measured for all different SPD techniques and strains. This is especially true for the significant decrease of Young׳s modulus for increasing R&F processing which is thus identified as a texture effect. Considering the mechanical biocompatibility (percentage of hardness over Young׳s modulus), a value of 3-4% is achieved with all the SPD routes applied which recommends them for enhancing ß Ti-alloys for biomedical applications.


Subject(s)
Alloys/chemistry , Biocompatible Materials/chemistry , Materials Testing , Elastic Modulus , Niobium , Tensile Strength , Titanium
4.
J Sep Sci ; 36(17): 2952-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23857600

ABSTRACT

Gold nanoparticles (GNPs) are popular colloidal substrates in various sensor, imaging, and nanomedicine applications. In separation science, they have raised some interest as a support for sample preparation. Reasons for their popularity are their low cost, ability for size-controlled synthesis with well-defined narrow nanoparticle size distributions, as well as straightforward surface functionalization by self-assembling (thiol-containing) molecules on the surface, which allows flexible introduction of functionalities for the selective capture of analytes. Most commonly, the method of first choice for size determination is dynamic light scattering (DLS). However, DLS has some serious shortcomings, and results from DLS may be misleading. For this reason, in this contribution several distinct complementary nanoparticle sizing methodologies were utilized and compared to characterize citrate-capped GNPs of different diameters in the range of 13-26 nm. Weaknesses and strengths of DLS, transmission electron microscopy, asymmetrical-flow field-flow fractionation and nanoelectrospray gas-phase electrophoretic mobility molecular analysis are discussed and the results comparatively assessed. Furthermore, the distinct GNPs were characterized by measuring their zeta-potential and surface plasmon resonance spectra. Overall, the combination of methods for GNP characterization gives a more realistic and comprehensive picture of their real physicochemical properties, (hydrodynamic) diameter, and size distribution.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Particle Size
5.
ACS Nano ; 7(2): 1129-36, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23331002

ABSTRACT

Gold nanoparticles (GNPs) are often used as colloidal carriers in numerous applications owing to their low-cost and size-controlled preparation as well as their straightforward surface functionalization with thiol containing molecules forming self-assembling monolayers (SAM). The quantification of the ligand density of such modified GNPs is technically challenging, yet of utmost importance for quality control in many applications. In this contribution, a new method for the determination of the surface coverage of GNPs with thiol containing ligands is proposed. It makes use of the measurement of the gold-to-sulfur (Au/S) ratio by inductively coupled plasma mass spectrometry (ICP-MS) and its dependence on the nanoparticle diameter. The simultaneous ICP-MS measurement of gold and sulfur was carefully validated and found to be a robust method with a relative standard uncertainty of lower than 10%. A major advantage of this method is the independence from sample preparation; for example, sample loss during the washing steps is not affecting the results. To demonstrate the utility of the straightforward method, GNPs of different diameters were synthesized and derivatized on the surface with bifunctional (lipophilic) ω-mercapto-alkanoic acids and (hydrophilic) mercapto-poly(ethylene glycol) (PEG)(n)-carboxylic acids, respectively, by self-assembling monolayer (SAM) formation. Thereby, a size-independent but ligand-chain length-dependent ligand density was found. The surface coverage increases from 4.3 to 6.3 molecules nm⁻² with a decrease of ligand chain length from 3.52 to 0.68 nm. Furthermore, no significant difference between the surface coverage of hydrophilic and lipophilic ligands with approximately the same ligand length was found, indicating that sterical hindrance is of more importance than, for example, intermolecular strand interactions of Van der Waals forces as claimed in other studies.

6.
Sci Technol Adv Mater ; 14(5): 055004, 2013 Oct.
Article in English | MEDLINE | ID: mdl-27877611

ABSTRACT

Aiming at understanding the governing microstructural phenomena during heat treatments of Ni-free Ti-based shape memory materials for biomedical applications, a series of Ti-Nb alloys with Nb concentrations up to 29 wt% was produced by cold-crucible casting, followed by homogenization treatment and water quenching. Despite the large amount of literature available concerning the thermal stability and ageing behavior of Ti-Nb alloys, only few studies were performed dealing with the isochronal transformation behavior of initially martensitic Ti-Nb alloys. In this work, the formation of martensites (α' and α″) and their stability under different thermal processing conditions were investigated by a combination of x-ray diffraction, differential scanning calorimetry, dilatometry and electron microscopy. The effect of Nb additions on the structural competition in correlation with stable and metastable phase diagrams was also studied. Alloys with 24 wt% Nb or less undergo a [Formula: see text] transformation sequence on heating from room temperature to 1155 K. In alloys containing >24 wt% Nb α″ martensitically reverts back to ß0, which is highly unstable against chemical demixing by formation of isothermal ωiso. During slow cooling from the single phase ß domain α precipitates and only very limited amounts of α″ martensite form.

7.
Histochem Cell Biol ; 135(2): 215-28, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21287192

ABSTRACT

Within the human testis, Reinke's crystals are found in Leydig cells but their nature and function are poorly understood. The aim of our study was to investigate the properties of Reinke's crystals in man with the normal morphology of the testis (control group) and infertile patients diagnosed with cryptorchidism. 20 biopsies from infertile patients and six biopsies from men with regular spermatogenesis (20-30 years.) were used. Sections of the testis tissue were stained with haematoxylin and eosin and a modified Masson's method. Specimens were observed by bright field, confocal and transmission electron microscopy (TEM). The number of Reinke's crystals in investigated groups was determined applying stereological methods. In both groups, Reinke's crystals were noted within the cytoplasm and nuclei of Leydig cells. Some "free" crystals were found within the interstitial space, outside Leydig cells. Confocal microscopy proved to be very useful in the assessment of the shape and 3D reconstruction of the crystal. TEM analysis confirmed a hexagonal form of the crystal, while crystallographic data on sections of 70-300 nm thickness provided a better insight into the organization of the crystal lattice. Stereological analysis revealed a significant increase in the number of crystals in cryptorchid testes when compared with controls. Increased number of crystals in cryptorchid specimens leads to the assumption that the prolonged exposure to higher (abdominal) temperature might stimulate enzymes involved in the synthesis of the proteins of the crystal. However, the exact molecular nature of the crystal lattice remains in both normal and cryptorchid testis obscure.


Subject(s)
Testis/ultrastructure , Adult , Cryptorchidism/pathology , Humans , Inclusion Bodies/ultrastructure , Leydig Cells/cytology , Male , Staining and Labeling/methods
8.
J Am Chem Soc ; 131(22): 7544-5, 2009 Jun 10.
Article in English | MEDLINE | ID: mdl-19441813

ABSTRACT

Dinuclear copper peroxo complexes obtained from mononuclear copper(I) complexes showed extremely high stabilities under ambient conditions in the solid state and could be heated above 100 degrees C without decomposition. The increased stability could be explained with regard to their molecular structures. Furthermore, the four complexes investigated showed a high potential for aliphatic C-H bond oxidations: for example, technical-grade toluene was oxidized to benzaldehyde in yields of up to 20%.

SELECTION OF CITATIONS
SEARCH DETAIL
...