Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 8): 127508, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37865377

ABSTRACT

Despite the high economic value of the monoterpene-rich essential oils from different genotypes of Cymbopogon, the knowledge about the genes and metabolic route(s) involved in the biosynthesis of aromatic monoterpenes in this genus is limited. In the present study, a comprehensive transcriptome analysis of four genotypes of Cymbopogon, displaying diverse quantitative and qualitative profiles of volatile monoterpenes in their essential oils has been carried out. The comparative analysis of the deduced protein sequences corresponding to the transcriptomes of the four genotypes revealed 4609 genotype-specific orthogroups, which might contribute in defining genotype-specific phenotypes. The transcriptome data mining led to the identification of unigenes involved in the isoprenogenesis. The homology searches, combined with the phylogenetic and expression analyses provided information about candidate genes concerning the biosynthesis of monoterpene aldehyde, monoterpene alcohol, and monoterpene esters. In addition, the present study suggests a potential role of geranial reductase like enzyme in the biosynthesis of monoterpene aldehyde in Cymbopogon spp. The detailed analysis of the candidate pathway genes suggested that multiple enzymatic routes might be involved in the biosynthesis of aromatic monoterpenes in the genus Cymbopogon. The present study provides deeper insights into the biosynthesis of monoterpenes, which will be useful for the genetic improvement of these aromatic grasses.


Subject(s)
Cymbopogon , Oils, Volatile , Monoterpenes/metabolism , Transcriptome , Cymbopogon/genetics , Cymbopogon/metabolism , Phylogeny , Monoterpene Aldehydes and Ketones , Oils, Volatile/metabolism , Genotype
2.
Planta ; 258(3): 49, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37480390

ABSTRACT

MAIN CONCLUSION: Morphological, phytochemical, and transcriptome analyses revealed candidate genes involved in the biosynthesis of volatile monoterpenes and development of glandular trichomes in Monarda citriodora. Monarda citriodora Cerv. ex Lag. is a valuable aromatic plant due to the presence of monoterpenes as major constituents in its essential oil (EO). Thus, it is of sheer importance to gain knowledge about the site of the biosynthesis of these terpenoid compounds in M. citriodora, as well as the genes involved in their biosynthesis. In this study, we studied different types of trichomes and their relative densities in three different developmental stages of leaves, early stage of leaf development (L1), mid-stage of leaf development (L2), and later stage of leaf development (L3) and the histochemistry of trichomes for the presence of lipid and terpenoid compounds. Further, the phytochemical analysis of this plant through GC-MS indicated a higher content of monoterpenes (thymol, thymoquinone, γ-terpinene, p-cymene, and carvacrol) in the L1 stage with a substantial decrease in the L3 stage of leaf development. This considerable decrease in the content of monoterpenes was attributed to the decrease in the trichome density from L1 to L3. Further, we developed a de novo transcriptome assembly by carrying out RNA sequencing of different plant parts of M. citriodora. The transcriptome data revealed several putative unigenes involved in the biosynthesis of specialized terpenoid compounds, as well as regulatory genes involved in glandular trichome development. The data generated in the present study build a strong foundation for further improvement of M. citriodora, in terms of quantity and quality of its essential oil, through genetic engineering.


Subject(s)
Monarda , Oils, Volatile , Monoterpenes , Terpenes , Gene Expression Profiling , Phytochemicals
3.
Plant Sci ; 334: 111780, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37390920

ABSTRACT

Lipoxygenase (LOX) enzymes play a pivotal role in the biosynthesis of oxylipins. The phyto-oxilipins have been implicated in diverse aspects of plant biology, from regulating plant growth and development to providing tolerance against biotic and abiotic stresses. C. sativa is renowned for its bioactive secondary metabolites, namely cannabinoids. LOX route is assumed to be involved in the biosynthesis of hexanoic acid, which is one of the precursors of cannabinoids of C. sativa. For obvious reasons, the LOX gene family deserves thorough investigation in the C. sativa. Genome-wide analysis revealed the presence of 21 LOX genes in C. sativa, which can be further grouped into 13-LOX and 9-LOX depending upon their phylogeny as well as the enzyme activity. The promoter regions of the CsLOX genes were predicted to contain cis-acting elements involved in phytohormones responsiveness and stress response. The qRT-PCR-based expression analysis of 21 LOX genes revealed their differential expression in different plant parts (root, stem, young leaf, mature leaf, sugar leaf, and female flower). The majority of CsLOX genes displayed preferential expression in the female flower, which is the primary site for the biosynthesis of cannabinoids. The highest LOX activity and expression level of a jasmonate marker gene were reported in the female flowers among all the plant parts. Several CsLOX genes were found to be upregulated by MeJA treatment. Based on the transient expression in Nicotiana benthamiana and the development of stable Nicotiana tabacum transgenic lines, we demonstrate that CsLOX13 encodes functional lipoxygenase and play an important role in the biosynthesis of oxylipins.


Subject(s)
Cannabinoids , Cannabis , Cannabis/genetics , Cannabis/metabolism , Oxylipins/pharmacology , Plant Growth Regulators , Plant Leaves/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Phylogeny
4.
Gene ; 783: 145554, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33705813

ABSTRACT

The transporters belonging to the MATE family are involved in the transportation of diverse ligands, including metal ions and small organic molecules, and, therefore, play an important role in plant biology. Our genome-wide analysis led to the identification of 138 MATE genes in N. tabacum, which were grouped into four major phylogenetic clades. The expression of several NtMATE genes was reported to be differential in different tissues, namely young leaf, mature leaf, stem, root, and mature flower. The upstream regions of the NtMATE genes were predicted to contain several cis-acting elements associated with hormonal, developmental, and stress responses. Some of the genes were found to display induced expression following methyl jasmonate treatment. The co-expression analysis revealed 126 candidate transcription factor genes that might be involved in the transcriptional regulation of 21 NtMATE genes. Certain MATE genes (NtMATE81, NtMATE82, NtMATE88, and NtMATE89) were predicted to be targeted by micro RNAs (nta-miR167a, nta-miR167b, nta-miR167c, nta-miR167d and nta-miR167e). The computational analysis of MATE transporters provided insights into the key amino acid residues involved in the binding of the alkaloids. Further, the putative function of some of the NtMATE transporters was also revealed. The present study develops a solid foundation for the functional characterization of MATE transporter genes in N. tabacum.


Subject(s)
Genome, Plant , Membrane Transport Proteins/genetics , Nicotiana/genetics , Plant Proteins/genetics , Acetates/metabolism , Amino Acid Motifs , Cyclopentanes/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Models, Molecular , Multigene Family , Oxylipins/metabolism , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...