Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Interdiscip Sci ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951382

ABSTRACT

Image classification, a fundamental task in computer vision, faces challenges concerning limited data handling, interpretability, improved feature representation, efficiency across diverse image types, and processing noisy data. Conventional architectural approaches have made insufficient progress in addressing these challenges, necessitating architectures capable of fine-grained classification, enhanced accuracy, and superior generalization. Among these, the vision transformer emerges as a noteworthy computer vision architecture. However, its reliance on substantial data for training poses a drawback due to its complexity and high data requirements. To surmount these challenges, this paper proposes an innovative approach, MetaV, integrating meta-learning into a vision transformer for medical image classification. N-way K-shot learning is employed to train the model, drawing inspiration from human learning mechanisms utilizing past knowledge. Additionally, deformational convolution and patch merging techniques are incorporated into the vision transformer model to mitigate complexity and overfitting while enhancing feature representation. Augmentation methods such as perturbation and Grid Mask are introduced to address the scarcity and noise in medical images, particularly for rare diseases. The proposed model is evaluated using diverse datasets including Break His, ISIC 2019, SIPaKMed, and STARE. The achieved performance accuracies of 89.89%, 87.33%, 94.55%, and 80.22% for Break His, ISIC 2019, SIPaKMed, and STARE, respectively, present evidence validating the superior performance of the proposed model in comparison to conventional models, setting a new benchmark for meta-vision image classification models.

2.
Sci Rep ; 12(1): 20876, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463244

ABSTRACT

Technology is playing an important role is healthcare particularly as it relates to disease prevention and detection. This is evident in the COVID-19 era as different technologies were deployed to test, detect and track patients and ensure COVID-19 protocol compliance. The White Spot Disease (WSD) is a very contagious disease caused by virus. It is widespread among shrimp farmers due to its mode of transmission and source. Considering the growing concern about the severity of the disease, this study provides a predictive model for diagnosis and detection of WSD among shrimp farmers using visualization and machine learning algorithms. The study made use of dataset from Mendeley repository. Machine learning algorithms; Random Forest classification and CHAID were applied for the study, while Python was used for implementation of algorithms and for visualization of results. The results achieved showed high prediction accuracy (98.28%) which is an indication of the suitability of the model for accurate prediction of the disease. The study would add to growing knowledge about use of technology to manage White Spot Disease among shrimp farmers and ensure real-time prediction during and post COVID-19.


Subject(s)
COVID-19 , Lichen Sclerosus et Atrophicus , Humans , Animals , Farmers , COVID-19/diagnosis , Crustacea , Seafood
3.
Comput Intell Neurosci ; 2022: 3813705, 2022.
Article in English | MEDLINE | ID: mdl-35909874

ABSTRACT

There are growing concerns about the mortality due to Breast cancer many of which often result from delayed detection and treatment. So an effective computational approach is needed to develop a predictive model which will help patients and physicians to manage the situation timely. This study presented a Weighted Bayesian Belief Network (WBBN) modeling for breast cancer prediction using the UCI breast cancer dataset. New automated ranking method was used to assign proper weights to attribute value pair based on their impact on causing the disease. Association between attributes was generated using weighted association rule mining between two attributes, multiattributes, and with class labels to generate rules. Weighted Bayesian confidence and weighted Bayesian lift measures were used to produce strong rules to build the model. To build WBBN, the Open Markov tool was used for structure and parametric learning using generated strong rules. The model was trained using 70% records and tested on 30% records with a threshold value of minimum support = 36% and confidence = 70% which produced results with an accuracy of 97.18%. Experimental results show that WBBN achieved better results in most cases compared to other predictive models. The study would contribute to the fight against breast cancer and the quality of treatment.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Algorithms , Bayes Theorem , Breast Neoplasms/diagnosis , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...