Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Comput Assist Radiol Surg ; 16(12): 2251-2260, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34478048

ABSTRACT

PURPOSE: A hotspot of bone metastatic lesion in a whole-body bone scintigram is often observed as left-right asymmetry. The purpose of this study is to present a network to evaluate bilateral difference of a whole-body bone scintigram, and to subsequently integrate it with our previous network that extracts the hotspot from a pair of anterior and posterior images. METHODS: Input of the proposed network is a pair of scintigrams that are the original one and the flipped version with respect to body axis. The paired scintigrams are processed by a butterfly-type network (BtrflyNet). Subsequently, the output of the network is combined with the output of another BtrflyNet for a pair of anterior and posterior scintigrams by employing a convolutional layer optimized using training images. RESULTS: We evaluated the performance of the combined networks, which comprised two BtrflyNets followed by a convolutional layer for integration, in terms of accuracy of hotspot extraction using 1330 bone scintigrams of 665 patients with prostate cancer. A threefold cross-validation experiment showed that the number of false positive regions was reduced from 4.30 to 2.13 for anterior and 4.71 to 2.62 for posterior scintigrams on average compared with our previous model. CONCLUSIONS: This study presented a network for hotspot extraction of bone metastatic lesion that evaluates bilateral difference of a whole-body bone scintigram. When combining the network with the previous network that extracts the hotspot from a pair of anterior and posterior scintigrams, the false positives were reduced by nearly half compared to our previous model.


Subject(s)
Bone and Bones , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnostic imaging
2.
Int J Comput Assist Radiol Surg ; 15(3): 401, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32008220

ABSTRACT

The article Automated measurement of bone scan index from a whole-body bone scintigram.

3.
Int J Comput Assist Radiol Surg ; 15(3): 389-400, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31836956

ABSTRACT

PURPOSE: We propose a deep learning-based image interpretation system for skeleton segmentation and extraction of hot spots of bone metastatic lesion from a whole-body bone scintigram followed by automated measurement of a bone scan index (BSI), which will be clinically useful. METHODS: The proposed system employs butterfly-type networks (BtrflyNets) for skeleton segmentation and extraction of hot spots of bone metastatic lesions, in which a pair of anterior and posterior images are processed simultaneously. BSI is then measured using the segmented bones and extracted hot spots. To further improve the networks, deep supervision (DSV) and residual learning technologies were introduced. RESULTS: We evaluated the performance of the proposed system using 246 bone scintigrams of prostate cancer in terms of accuracy of skeleton segmentation, hot spot extraction, and BSI measurement, as well as computational cost. In a threefold cross-validation experiment, the best performance was achieved by BtrflyNet with DSV for skeleton segmentation and BtrflyNet with residual blocks. The cross-correlation between the measured and true BSI was 0.9337, and the computational time for a case was 112.0 s. CONCLUSION: We proposed a deep learning-based BSI measurement system for a whole-body bone scintigram and proved its effectiveness by threefold cross-validation study using 246 whole-body bone scintigrams. The automatically measured BSI and computational time for a case are deemed clinically acceptable and reliable.


Subject(s)
Bone Neoplasms/diagnostic imaging , Bone and Bones/diagnostic imaging , Radionuclide Imaging/methods , Whole Body Imaging/methods , Deep Learning , Disease Progression , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...