Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37686977

ABSTRACT

Organic cocrystals, which are assembled by noncovalent intermolecular interactions, have garnered intense interest due to their remarkable chemicophysical properties and practical applications. One notable feature, namely, the charge transfer (CT) interactions within the cocrystals, not only facilitates the formation of an ordered supramolecular network but also endows them with desirable semiconductor characteristics. Here, we present the intriguing ambipolar CT properties exhibited by nanosheets composed of single cocrystals of C70/ferrocene (C70/Fc). When heated to 150 °C, the initially ambipolar monoclinic C70/Fc nanosheet-based field-effect transistors (FETs) were transformed into n-type face-centered cubic (fcc) C70 nanosheet-based FETs owing to the elimination of Fc. This thermally induced alteration in the crystal structure was accompanied by an irreversible switching of the semiconducting behavior of the device; thus, the device transitions from ambipolar to unipolar. Importantly, the C70/Fc nanosheet-based FETs were also found to be much more thermally stable than the previously reported C60/Fc nanosheet-based FETs. Furthermore, we conducted visible/near-infrared diffuse reflectance and photoemission yield spectroscopies to investigate the crucial role played by Fc in modulating the CT characteristics. This study provides valuable insights into the overall functionality of these nanosheet structures.

2.
RSC Adv ; 12(30): 19548-19553, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35865602

ABSTRACT

In recent years, supramolecular cocrystals containing organic donors and acceptors have been explored as active components in organic field-effect transistors (FETs). Herein, we report the synthesis of novel single-cocrystal nanoribbons with ambipolar charge transport characteristics from C70 and 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin (3,5-TPP) in a 3 : 2 ratio. The C70/3,5-TPP nanoribbons exhibited a new strong absorption band in the near-infrared region, indicating the presence of charge-transfer interactions between C70 and 3,5-TPP in the cocrystals. We elucidated the mechanism of the charge-transport properties of the nanoribbons using photoemission yield spectroscopy in air and theoretical calculations. A strong interaction between porphyrins in the one-dimensional porphyrin chains formed in C70/3,5-TPP nanoribbons, which was confirmed by single-crystal X-ray diffraction, plays a crucial role in their hole transport properties.

3.
ACS Appl Mater Interfaces ; 12(2): 2878-2883, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31845789

ABSTRACT

Recently, organic donor-acceptor (D-A) cocrystals have attracted special interest as functional materials because of their unique chemical and physical properties that are not exhibited by simple mixtures of their components. Herein, we report the preparation of one-dimensional novel D-A cocrystals from C60 and 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)porphyrin (3,5-TPP); these cocrystals have near-infrared (NIR) light-sensing abilities, despite each of their component molecule individually having no NIR light-sensing properties. Micrometer-sized rectangular columnar C60-3,5-TPP cocrystals were produced by a simple liquid-liquid interfacial precipitation method. The cocrystals exhibit a new strong transition in the NIR region indicative of the existence of charge-transfer interactions between C60 and 3,5-TPP in the cocrystals. The C60-3,5-TPP cocrystals showed n-type transport characteristics with NIR light-sensing properties when the cocrystals were incorporated in bottom-gate/bottom-contact organic phototransistors, revealing that organic cocrystals with suitable charge-transfer interaction are useful as functional materials for the creation of novel NIR-light-sensing devices.

4.
J Nanosci Nanotechnol ; 18(1): 451-454, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29768868

ABSTRACT

Crystalline nanowhiskers (NWs) composed of fullerene C60 and C70 molecules, i.e., alloy NWs, were synthesized by a liquid-liquid interfacial precipitation method. The nominal composition of C70 ranged from 0 to 40 mass%. The bending tests of the alloy NWs were performed inside a high-resolution transmission electron microscope, and the deformation behavior was observed in situ. The bending force acting on the NWs were measured simultaneously by an optical deflection method, and the Young's modulus was estimated from the resulting force-flexure curves. The average Young's modulus was found to increase to approximately 30 GPa as the C70 composition was increased to the solubility limit. In contrast, the Young's modulus decreased with increasing NW diameter caused by the addition of C70.

5.
J Phys Condens Matter ; 28(35): 354003, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27385220

ABSTRACT

Superconductivity in alkali metal-doped fullerene nanowhiskers (C60NWs) was observed in K3.3C60NWs, Rb3.0C60NWs and Cs2.0Rb1.0C60NWs with transition temperatures at 17, 25 and 26 K, respectively. Almost full shielding volume fraction (~80%) was observed in K3.3C60NWs when subjected to thermal treatment at 200 °C for a duration of 24 h. In contrast, the shielding fraction of Rb3.0C60NWs and Cs2.0Rb1.0C60NWs were calculated to be 8% and 6%, respectively. Here we report on an extensive investigation of the superconducting properties of these AC60NWs (A = K3.3, Rb3.0 and Cs2.0Rb1.0). These properties are compared to the ones reported on the corresponding conventional (single-crystal or powder) K-doped fullerene. We also evaluated the critical current densities of these C60NWs using the Bean model under an applied magnetic field up to 50 kOe.

6.
Molecules ; 17(5): 4851-9, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22538488

ABSTRACT

We synthesized superconducting fullerene nanowhiskers (C(60)NWs) by potassium (K) intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x) in the range between 1.6 and 6.0 in K-doped C(60) nanowhiskers (K(x)C(60)NWs), while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K(3.3)C(60)NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C(60)) crystal was less than 1%. We report the superconducting behaviors of our newly synthesized K(x)C(60)NWs in comparison to those of K(x)C(60) crystals, which show superconductivity at 19 K in K(3)C(60). The lattice structures are also discussed, based on the x-ray diffraction (XRD) analyses.


Subject(s)
Fullerenes/chemistry , Nanostructures/chemistry , Crystallization , Crystallography, X-Ray , Electric Conductivity , Microscopy, Electron, Scanning , Nanostructures/ultrastructure , Potassium/chemistry , Temperature
7.
J Am Chem Soc ; 134(17): 7204-6, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22515598

ABSTRACT

A novel supramolecular nanoarchitecture, comprising C(60)/Co porphyrin nanosheets, was prepared by a simple liquid-liquid interfacial precipitation method and fully characterized by means of optical microscopy, AFM, STEM, TEM, and XRD. It is established that the highly crystalline C(60)/Co porphyrin nanosheets have a simple (1:1) stoichiometry, and when incorporated in bottom-gate, bottom-contact field-effect transistors (FETs), they show ambipolar charge transport characteristics.

8.
Phys Chem Chem Phys ; 14(8): 2940-50, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22262196

ABSTRACT

Photoinduced charge separation processes of three-layer supramolecular hybrids, fullerene-porphyrin-SWCNT, which are constructed from semiconducting (7,6)- and (6,5)-enriched SWCNTs and self-assembled via π-π interacting long alkyl chain substituted porphyrins (tetrakis(4-dodecyloxyphenyl)porphyrins; abbreviated as MP(alkyl)(4)) (M = Zn and H(2)), to which imidazole functionalized fullerene[60] (C(60)Im) is coordinated, have been investigated in organic solvents. The intermolecular alkyl-π and π-π interactions between the MP(alkyl)(4) and SWCNTs, in addition, coordination between C(60)Im and Zn ion in the porphyrin cavity are visualized using DFT calculations at the B3LYP/3-21G(*) level, predicting donor-acceptor interactions between them in the ground and excited states. The donor-acceptor nanohybrids thus formed are characterized by TEM imaging, steady-state absorption and fluorescence spectra. The time-resolved fluorescence studies of MP(alkyl)(4) in two-layered nanohybrids (MP(alkyl)(4)/SWCNT) revealed efficient quenching of the singlet excited states of MP(alkyl)(4) ((1)MP*(alkyl)(4)) with the rate constants of charge separation (k(CS)) in the range of (1-9) × 10(9) s(-1). A nanosecond transient absorption technique confirmed the electron transfer products, MP˙(+)(alkyl)(4)/SWCNT˙(-) and/or MP˙(-)(alkyl)(4)/SWCNT˙(+) for the two-layer nanohybrids. Upon further coordination of C(60)Im to ZnP, acceleration of charge separation via(1)ZnP* in C(60)Im→ZnP(alkyl)(4)/SWCNT is observed to form C(60)˙(-)Im→ZnP˙(+)(alkyl)(4)/SWCNT and C(60)˙(-)Im→ZnP(alkyl)(4)/SWCNT˙(+) charge separated states as supported by the transient absorption spectra. These characteristic absorptions decay with rate constants due to charge recombination (k(CR)) in the range of (6-10) × 10(6) s(-1), corresponding to the lifetimes of the radical ion-pairs of 100-170 ns. The electron transfer in the nanohybrids has further been utilized for light-to-electricity conversion by the construction of proof-of-concept photoelectrochemical solar cells.

9.
J Am Chem Soc ; 131(29): 9940-4, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19569649

ABSTRACT

The supramolecular nanoarchitectures, C(60)/ferrocene nanosheets, were prepared by a simple liquid-liquid interfacial precipitation method and fully characterized by means of SEM, STEM, HRTEM, XRD, Raman and UV-vis-NIR spectra. The highly crystallized C(60)/ferrocene hexagonal nanosheets had a size of ca. 9 microm and the formulation C(60)(ferrocene)(2). A strong charge-transfer (CT) band between ferrocene and C(60) was observed at 782 nm, indicating the presence of donor-acceptor interaction in the nanosheets. Upon heating the nanosheets to 150 degrees C, the CT band disappeared due to the sublimation of ferrocene from the C(60)/ferrocene hybrid, and C(60) nanosheets with an fcc crystal structure and the same shape and size as the C(60)/ferrocene nanosheets were obtained.


Subject(s)
Ferrous Compounds/chemistry , Ferrous Compounds/chemical synthesis , Fullerenes/chemistry , Nanostructures/chemistry , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Metallocenes , Particle Size , Surface Properties
10.
J Am Chem Soc ; 130(48): 16224-30, 2008 Dec 03.
Article in English | MEDLINE | ID: mdl-18998645

ABSTRACT

The thermal reaction of La@C(82)(C(2v)) with 3-triphenylmethyl-5-oxazolidinone (1) in toluene affords benzyl monoadducts La@C(82)(C(2v))(CH(2)C(6)H(5)) (2a-2d). The same monoadducts are also obtained by the photoirradiation of La@C(82)(C(2v)) in toluene without the existence of 1. These reactions are applicable to paramagnetic metallofullerenes, such as La@C(82)(C(s)) and Ce@C(82)(C(2v)). The photoirradiation of La@C(82)(C(2v)) in 1,2-dichlorobenzene in the presence of alpha,alpha,2,4-tetrachlorotoluene also affords the monoadducts La@C(82)(C(2v))(CHClC(6)H(3)Cl(2)) (3a-3d). The monoadducts are fully characterized by spectroscopic analyses. Single-crystal X-ray structure analysis for 3d reveals the unique structure. Theoretical calculations show that the cage carbons having high spin densities are selectively attacked by radical species to form the monoadducts linked by a carbon-carbon single bond. The thermal reaction of La@C(82)(C(2v)) with 1 in benzene affords metallofulleropyrrolidine La@C(82)(C(2v))(C(2)H(4)NCPh(3)) (5), unlike the reaction in toluene.


Subject(s)
Fullerenes/chemistry , Lanthanum/chemistry , Benzene/chemistry , Chromatography, High Pressure Liquid , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Fullerenes/isolation & purification , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Oxidation-Reduction , Photochemical Processes , Solvents , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry, Infrared
12.
J Am Chem Soc ; 130(39): 12840-1, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18778060

ABSTRACT

We report here the results on single crystal X-ray crystallographic analysis of the Gd@C82 carbene adduct (Gd@C82(Ad), Ad = adamantylidene). The Gd atom in Gd@C82(Ad) is located at an off-centered position near a hexagonal ring in the C2v-C82 cage, as found for M@C82 (M = Sc and La) and La@C82(Ad). Theoretical calculation also confirms the position of the Gd atom in the X-ray crystal structure.


Subject(s)
Adamantane/chemistry , Fullerenes/chemistry , Gadolinium/chemistry , Organometallic Compounds/chemistry , Crystallography, X-Ray , Methane/analogs & derivatives , Methane/chemistry , Molecular Structure
13.
J Phys Chem A ; 112(33): 7627-31, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-18666762

ABSTRACT

The endohedral dimetallofullerene having a non-IPR fullerene cage, Ce2@C72, is spectroscopically and theoretically characterized. The (13)C NMR measurements display large temperature-dependent signals caused by paramagnetic shifts, indicating that the Ce atoms are located near the two fused pentagons in the C72 cage. Theoretical calculations are performed to clarify the metal position, which are in good agreement with the result obtained by the paramagnetic (13)C NMR analysis. Electrochemical measurements reveal that Ce2@C72 has particularly lower oxidation and higher reduction potentials than other endohedral dimetallofullerenes.

14.
Inorg Chem ; 47(9): 3577-83, 2008 May 05.
Article in English | MEDLINE | ID: mdl-18355045

ABSTRACT

4,5-Bis(benzylthio)-3,6-diethylphthalonitrile (1) was mixed with 4 -t-butylphthalonitrile and then treated with lithium alkoxide in n-hexanol to produce the corresponding unsymmetrically substituted phthalocyanines (2) and (3) with two or four benzylthio groups, respectively. Treatment of phthalocyanine (2) with nickel(II) acetate yielded the corresponding metal complex 2-Ni. Two benzyl groups of 2 and 2-Ni were removed with lithium/THF/ammonia at -78 degrees C under argon, and the dithiolate anions generated were then reacted with elemental sulfur to give monotrithiolophthalocyanines (5) and (5-Ni). A similar treatment of 3 produced bistrithiolophthalocyanine (6). Tetrakistrithiolophthalocyanine (7-Ni) was prepared by complexation of phthalocyanine (4) with nickel(II) acetate, followed by a Birch reduction of the resulting nickel(II) complex (4-Ni), and then sulfurization and cyclization of the octathiolate anions that were generated. The structures of the phthalocyanines were determined by (1)H NMR and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The optical and electrochemical properties of the phthalocyanines were examined by UV-vis absorption spectroscopy and cyclic voltammetry. Treatment of 5, 5-Ni, 6, 7, and 7-Ni with trifluoroacetic acid in chloroform generated positively charged species, which were characterized by UV-vis and/or NMR spectroscopy.

15.
J Phys Chem A ; 112(6): 1294-7, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18198854

ABSTRACT

The photochemical reaction of La@C82(Cs) with 2-adamantane-2,3-[3H]-diazirine (1) affords the adduct 2 of La@C82(Cs) with adamantylidene (Ad:) in a high selectivity. The two isomers of La@C82(Cs)(Ad), 2a and 2b, are isolated by HPLC and characterized by electron spin resonance, mass, and UV-vis-near-infrared spectroscopies. The electronic properties of 2a and 2b are very similar to that of the pristine La@C82(Cs), suggesting that 2a and 2b retain the essential electronic and structural character of La@C82(Cs).

16.
Chem Commun (Camb) ; (5): 558-60, 2008 Feb 07.
Article in English | MEDLINE | ID: mdl-18209788

ABSTRACT

Dimetallofullerene Ce(2)@C(78) and its bis-silylated derivative (1) were successfully prepared and fully characterized.

17.
J Am Chem Soc ; 130(4): 1171-6, 2008 Jan 30.
Article in English | MEDLINE | ID: mdl-18179208

ABSTRACT

The photochemical reaction of M2@C80 (M = La and Ce) with 2-adamantane-2,3'-[3H]-diazirine (1) affords the corresponding adducts by carbene addition. The adducts were characterized by spectroscopic and single-crystal X-ray structure analyses. Crystallographic data for the adduct La2@C80(Ad) (2, Ad = adamantylidene) reveal that the two La atoms are collinear with the spiro carbon of the 6,6-open adduct. It is noteworthy that the La-La distance is highly elongated by the addition of carbene. Paramagnetic 13C NMR spectral analysis of the adduct Ce2@C80(Ad) (3) indicates that the two Ce atoms are also collinear with the spiro carbon at room temperature in solution. The unique metal positions were confirmed by density functional calculations.

19.
Chem Commun (Camb) ; (26): 2680-2, 2007 Jul 14.
Article in English | MEDLINE | ID: mdl-17594018

ABSTRACT

The (139)La NMR study of the exohedrally functionalized derivatives of La(2)@C(80) metallofullerene, La(2)@C(80)(Ar(2)Si)(2)CH(2) (: Ar = Mes, Mes = mesityl, : Ar = Dep, Dep = 2,6-diethylphenyl), reveal that the two La atoms hop between two sites along the equator of the C(80) cage.

SELECTION OF CITATIONS
SEARCH DETAIL
...