Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0303375, 2024.
Article in English | MEDLINE | ID: mdl-38728348

ABSTRACT

Hearing loss is a pivotal risk factor for dementia. It has recently emerged that a disruption in the intercommunication between the cochlea and brain is a key process in the initiation and progression of this disease. However, whether the cochlear properties can be influenced by pathological signals associated with dementia remains unclear. In this study, using a mouse model of Alzheimer's disease (AD), we investigated the impacts of the AD-like amyloid ß (Aß) pathology in the brain on the cochlea. Despite little detectable change in the age-related shift of the hearing threshold, we observed quantitative and qualitative alterations in the protein profile in perilymph, an extracellular fluid that fills the path of sound waves in the cochlea. Our findings highlight the potential contribution of Aß pathology in the brain to the disturbance of cochlear homeostasis.


Subject(s)
Alzheimer Disease , Cochlea , Disease Models, Animal , Perilymph , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Perilymph/metabolism , Cochlea/metabolism , Cochlea/pathology , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Hearing Loss/metabolism , Hearing Loss/pathology
2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38256915

ABSTRACT

Isoniazid is a first-line drug in antitubercular therapy. Isoniazid is one of the most commonly used drugs that can cause liver injury or acute liver failure, leading to death or emergency liver transplantation. Therapeutic approaches for the prevention of isoniazid-induced liver injury are yet to be established. In this study, we identified the gene expression signature for isoniazid-induced liver injury using a public transcriptome dataset, focusing on the differences in susceptibility to isoniazid in various mouse strains. We predicted that lansoprazole is a potentially protective drug against isoniazid-induced liver injury using connectivity mapping and an adverse event reporting system. We confirmed the protective effects of lansoprazole against isoniazid-induced liver injury using zebrafish and patients' electronic health records. These results suggest that lansoprazole can ameliorate isoniazid-induced liver injury. The integrative approach used in this study may be applied to identify novel functions of clinical drugs, leading to drug repositioning.

3.
Anticancer Res ; 43(12): 5613-5620, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38030205

ABSTRACT

BACKGROUND/AIM: Chemotherapy-induced peripheral neuropathy (CIPN) due to oxaliplatin (L-OHP) is a major clinical problem. Effective and safe preventive strategies for CIPN are urgently needed. Although proton pump inhibitors (PPIs) have various off-target effects, their clinical impact on L-OHP-induced CIPN remains unclear. In the present study, we investigated the effects of PPIs on L-OHP-induced CIPN in patients using two real-world clinical databases. PATIENTS AND METHODS: We retrospectively analyzed the electronic medical records of Osaka University Hospital to examine the effect of PPIs on CIPN development in 217 patients who received XELOX (L-OHP plus capecitabine) therapy for colorectal cancer. In addition, the Japanese Adverse Drug Event Report (JADER) database was used to validate the effects of PPIs on L-OHP-induced CIPN. RESULTS: The incidences of CIPN (grade ≥2) and discontinuation of L-OHP were significantly lower in patients with PPIs than in those without PPIs. Multivariate analysis showed that concomitant PPIs use was an independent factor that significantly contributed to the prevention of grade ≥2 CIPN (odds ratio=0.054, p<0.001). Kaplan-Meier analysis showed that the time to onset of grade ≥2 CIPN was significantly prolonged in patients with PPIs without affecting the therapeutic efficacy of L-OHP (p=0.004). Moreover, JADER database analyses revealed that the reporting odds ratio of any PPI for L-OHP-induced CIPN was 0.485. CONCLUSION: Concomitant PPI use ameliorated L-OHP-induced CIPN in patients with colorectal cancer.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Peripheral Nervous System Diseases , Humans , Oxaliplatin/adverse effects , Proton Pump Inhibitors/therapeutic use , Retrospective Studies , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/prevention & control , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/chemically induced , Antineoplastic Agents/adverse effects
4.
Biomedicines ; 10(9)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36140322

ABSTRACT

An MSM/Ms strain was established using Japanese wild mice, which exhibit resistance to several phenotypes associated with aging, such as obesity, inflammation, and tumorigenesis, compared to common inbred mouse strains. MSM/Ms strain is resistant to age-related hearing loss, and their auditory abilities are sustained for long durations. The age-related hearing loss 3 (ahl3) locus contributes to age-related hearing in MSM/Ms strain. We generated ahl3 congenic strains by transferring a genomic region on chromosome 17 from MSM/Ms mice into C57BL/6J mice. Although C57BL/6J mice develop age-related hearing loss because of the ahl allele of the cadherin 23 gene, the development of middle- to high-frequency hearing loss was significantly delayed in an ahl3 congenic strain. Moreover, the novel age-related hearing loss 10 (ahl10) locus associated with age-related hearing resistance in MSM/Ms strain was mapped to chromosome 12. Although the resistance effects in ahl10 congenic strain were slightly weaker than those in ahl3 congenic strain, slow progression of age-related hearing loss was confirmed in ahl10 congenic strain despite harboring the ahl allele of cadherin 23. These results suggest that causative genes and polymorphisms of the ahl3 and ahl10 loci are important targets for the prevention and treatment of age-related hearing loss.

5.
Front Pharmacol ; 13: 896760, 2022.
Article in English | MEDLINE | ID: mdl-35910376

ABSTRACT

Cisplatin (CDDP) is a well-known chemotherapeutic drug approved for various cancers. However, CDDP accumulates in the inner ear cochlea via organic cation transporter 2 (OCT2) and causes ototoxicity, which is a major clinical limitation. Since lansoprazole (LPZ), a proton pump inhibitor, is known to inhibit OCT2-mediated transport of CDDP, we hypothesized that LPZ might ameliorate CDDP-induced ototoxicity (CIO). To test this hypothesis, we utilized in vivo fluorescence imaging of zebrafish sensory hair cells. The fluorescence signals in hair cells in zebrafish treated with CDDP dose-dependently decreased. Co-treatment with LPZ significantly suppressed the decrease of fluorescence signals in zebrafish treated with CDDP. Knockout of a zebrafish homolog of OCT2 also ameliorated the reduction of fluorescence signals in hair cells in zebrafish treated with CDDP. These in vivo studies suggest that CDDP damages the hair cells of zebrafish through oct2-mediated accumulation and that LPZ protects against CIO, possibly inhibiting the entry of CDDP into the hair cells via oct2. We also evaluated the otoprotective effect of LPZ using a public database containing adverse event reports. The analysis revealed that the incidence rate of CIO was significantly decreased in patients treated with LPZ. We then retrospectively analyzed the medical records of Mie University Hospital to examine the otoprotective effect of LPZ. The incidence rate of ototoxicity was significantly lower in patients co-treated with LPZ compared to those without LPZ. These retrospective findings suggest that LPZ is also protective against CIO in humans. Taken together, co-treatment with LPZ may reduce the risk of CIO.

6.
Congenit Anom (Kyoto) ; 62(1): 27-37, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34816492

ABSTRACT

Palatogenesis is affected by many factors, including gene polymorphisms and exposure to toxic chemicals during sensitive developmental periods. Cleft palate is one of the most common congenital anomalies, and ongoing efforts to elucidate the molecular mechanisms underlying palatogenesis are providing useful insights to reduce the risk of this disorder. To identify novel potential regulators of palatogenesis, we analyzed public transcriptome datasets from a mouse model of cleft palate caused by selective deletion of transforming growth factor-ß (TGFß) receptor type 2 in cranial neural crest cells. We identified the homeobox transcription factor Mohawk (Mkx) as a gene downregulated in the maxilla of TGFß knockout mice compared with wild-type mice. To examine the role of mkx in palatogenesis, we used CRISPR/Cas9 editing to generate zebrafish with impaired expression of mkxa and mkxb, the zebrafish homologs of Mkx. We found that mkx crispants expressed reduced levels of gli1, a critical transcription factor in the Sonic hedgehog (SHH) signaling pathway that plays an important role in the regulation of palatogenesis. Furthermore, we found that mkxa-/- zebrafish were more susceptible than mkxa+/+ zebrafish to the deleterious effects of cyclopamine, an inhibitor of SHH signaling, on upper jaw development. These results suggest that Mkx may be involved in palatogenesis regulated by TGFß and SHH signaling, and that impairment in Mkx function may be related to the etiology of cleft palate.


Subject(s)
Cleft Palate , Homeodomain Proteins , Palate/growth & development , Transcription Factors , Animals , Cleft Palate/chemically induced , Cleft Palate/genetics , Gene Expression Regulation, Developmental , Genes, Homeobox , Hedgehog Proteins/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Neural Crest/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish/genetics , Zebrafish/metabolism
7.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34832899

ABSTRACT

Hepatic apoptosis is involved in a variety of pathophysiologic conditions in the liver, including hepatitis, steatosis, and drug-induced liver injury. The development of easy-to-perform and reliable in vivo assays would thus greatly enhance the efforts to understand liver diseases and identify associated genes and potential drugs. In this study, we developed a transgenic zebrafish line that was suitable for the assessment of caspase 3 activity in the liver by using in vivo fluorescence imaging. The larvae of transgenic zebrafish dominantly expressed Casper3GR in the liver under control of the promoter of the phosphoenolpyruvate carboxykinase 1 gene. Casper3GR is composed of two fluorescent proteins, tagGFP and tagRFP, which are connected via a peptide linker that can be cleaved by activated caspase 3. Under tagGFP excitation conditions in zebrafish that were exposed to the well-characterized hepatotoxicant isoniazid, we detected increased and decreased fluorescence associated with tagGFP and tagRFP, respectively. This result suggests that isoniazid activates caspase 3 in the zebrafish liver, which digests the linker between tagGFP and tagRFP, resulting in a reduction in the Förster resonance energy transfer to tagRFP upon tagGFP excitation. We also detected isoniazid-induced inhibition of caspase 3 activity in zebrafish that were treated with the hepatoprotectants ursodeoxycholic acid and obeticholic acid. The transgenic zebrafish that were developed in this study could be a powerful tool for identifying both hepatotoxic and hepatoprotective drugs, as well as for analyzing the effects of the genes of interest to hepatic apoptosis.

8.
PLoS One ; 16(6): e0252944, 2021.
Article in English | MEDLINE | ID: mdl-34111189

ABSTRACT

INTRODUCTION: Good adherence of antihypertensives is recommended for the accomplishment of hypertension therapy. The number of medications and characteristics contributing to medication regimen complexity, such as dosage forms and dosing frequency, are known to influence medication adherence. However, the effect of medication regimen complexity on the therapeutic efficacy of medicines remains to be clarified. In the present study, we retrospectively investigated the effect of number of medications and medication regimen complexity on medication adherence and therapeutic efficacy in patients with hypertension. METHODS: According to the inclusion and exclusion criteria, 1,057 patients, who were on medications including antihypertensives on admission at the Mie University Hospital between July 2018 and December 2018, were enrolled in this study. Poor blood pressure management was defined if the systolic or diastolic blood pressure were ≥140 mmHg or ≥ 90 mmHg. Medication regimen complexity was quantified using the medication regimen complexity index (MRCI) score. RESULTS: Among 1,057 patients, 164 and 893 patients were categorized into poor and good adherence groups, respectively. The multivariate analyses revealed that age ≥ 71 years and oral MRCI score ≥ 19.5 but not number of oral medications were extracted as risk factors for poor medication adherence. Medication adherence and blood pressure management were poor in the group with oral MRCI score ≥ 19.5, regardless of the age. The rate of readmission was similar. CONCLUSION: Our study is the first to demonstrate that medication regimen complexity rather than number of medications is closely related to medication adherence and blood pressure management. Hence, physicians and/or pharmacists should consider the complexity of medication regimens while modifying them.


Subject(s)
Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Hypertension/drug therapy , Medication Adherence/statistics & numerical data , Adult , Age Factors , Aged , Aged, 80 and over , Antihypertensive Agents/pharmacology , Disease Management , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Patient Readmission/statistics & numerical data , Polypharmacy , Retrospective Studies , Risk Factors , Young Adult
9.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33419241

ABSTRACT

Cisplatin is widely used to treat various types of cancers, but it is often limited by nephrotoxicity. Here, we employed an integrated in silico and in vivo approach to identify potential treatments for cisplatin-induced nephrotoxicity (CIN). Using publicly available mouse kidney and human kidney organoid transcriptome datasets, we first identified a 208-gene expression signature for CIN and then used the bioinformatics database Cmap and Lincs Unified Environment (CLUE) to identify drugs expected to counter the expression signature for CIN. We also searched the adverse event database, Food and Drug Administration. Adverse Event Reporting System (FAERS), to identify drugs that reduce the reporting odds ratio of developing cisplatin-induced acute kidney injury. Palonosetron, a serotonin type 3 receptor (5-hydroxytryptamine receptor 3 (5-HT3R)) antagonist, was identified by both CLUE and FAERS analyses. Notably, clinical data from 103 patients treated with cisplatin for head and neck cancer revealed that palonosetron was superior to ramosetron in suppressing cisplatin-induced increases in serum creatinine and blood urea nitrogen levels. Moreover, palonosetron significantly increased the survival rate of zebrafish exposed to cisplatin but not to other 5-HT3R antagonists. These results not only suggest that palonosetron can suppress CIN but also support the use of in silico and in vivo approaches in drug repositioning studies.

10.
Article in English | MEDLINE | ID: mdl-30805197

ABSTRACT

BACKGROUND: Magnesium oxide (MgO), an antacid and laxative, is widely used in Japan to treat constipation and peptic ulcers. Because serum Magnesium (Mg) levels are elevated in elderly and/or patients with renal failure, its periodic monitoring is recommended for patients prescribed MgO, in order to prevent MgO-induced hypermagnesemia. However, there is little information regarding the factors contributing to the development of MgO-induced hypermagnesemia. In the present study, we retrospectively investigated the risk factors of hypermagnesemia in patients prescribed MgO. METHODS: Data of 3258 patients hospitalized in Mie University Hospital between October 2015 and September 2017, who were prescribed MgO tablets, were extracted from the electronic medical records. According to the inclusion and exclusion criteria, 320 of the 3258 patients were enrolled in this study. Hypermagnesemia was defined as serum Mg levels ≥2.5 mg/dL (by the Common Terminology Criteria for Adverse Events version 4.0). Uni- and multivariate analyses were performed to identify risk factors for the development of hypermagnesemia in patients prescribed MgO using the following variables: age, estimated glomerular filtration rate, blood urea nitrogen levels, MgO dose, duration of MgO administration, and co-administrated proton pump inhibitors, H2 blocker (famotidine), vitamin D3 drugs, and diuretics. RESULTS: Seventy-five patients out of 320 (23%) developed grade 1 and grade 3 hypermagnesemia, with the occurrence of grade 1 and grade 3 in 62 (19%) and 13 (4%) patients, respectively. Multivariate logistic regression analyses indicated 4 independent risk factors for hypermagnesemia comprising estimated glomerular filtration rate ≤ 55.4 mL/min (odds ratio (OR): 3.105, P = 0.001), blood urea nitrogen ≥22.4 mg/dL (OR: 3.490, P < 0.001), MgO dose ≥1650 mg/day (OR: 1.914, P = 0.039), and duration of MgO administration ≥36 days (OR: 2.198, P = 0.012). The occurrence rate of hypermagnesemia was elevated in accordance with these risk factors. CONCLUSIONS: These results suggest that a periodic monitoring of serum Mg levels is strongly recommended in MgO prescribed patients, especially in those with multiple risk factors for hypermagnesemia. The present findings provide useful information for the safe management of MgO therapy.

11.
Biochem Biophys Res Commun ; 490(2): 393-399, 2017 08 19.
Article in English | MEDLINE | ID: mdl-28623133

ABSTRACT

Prostaglandin (PG) D2 enhanced lipid accumulation in adipocytes. However, its molecular mechanism remains unclear. In this study, we investigated the regulatory mechanisms of PGD2-elevated lipid accumulation in mouse adipocytic 3T3-L1 cells. The Gi-coupled DP2 (CRTH2) receptors (DP2R), one of the two-types of PGD2 receptors were dominantly expressed in adipocytes. A DP2R antagonist, CAY10595, but not DP1 receptor antagonist, BWA868C cleared the PGD2-elevated intracellular triglyceride level. While, a DP2R agonist, 15R-15-methyl PGD2 (15R) increased the mRNA levels of the adipogenic and lipogenic genes, and decreased the glycerol release level. In addition, the forskolin-mediated increase of cAMP-dependent protein kinase A (PKA) activity and phosphorylation of hormone-sensitive lipase (HSL) was repressed by the co-treatment with 15R. Moreover, the lipolysis was enhanced in the adipocyte-differentiated DP2R gene-knockout mouse embryonic fibroblasts. These results indicate that PGD2 suppressed the lipolysis by repression of the cAMP-PKA-HSL axis through DP2R in adipocytes.


Subject(s)
Adipocytes/metabolism , Lipolysis , Prostaglandin D2/metabolism , Receptors, Immunologic/metabolism , Receptors, Prostaglandin/metabolism , 3T3-L1 Cells , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Knockout Techniques , Mice , Mice, Inbred C57BL , Phosphorylation , Receptors, Immunologic/genetics , Receptors, Prostaglandin/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...