Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Front Public Health ; 10: 870784, 2022.
Article in English | MEDLINE | ID: mdl-35968480

ABSTRACT

Objective: To assess exposure levels to electromagnetic fields (EMFs) among library workers in Japan, focusing on co-exposure to intermediate-frequency EMF (IF-EMF) and pulsed EMF, to propose a new epidemiological research methodology. Methods: The evaluated exposure sources were an electromagnetic type-electronic article surveillance gate (EM-EAS, IF-EMF (operating frequency 220 Hz-14 kHz)) and an activator/deactivator of anti-theft tags termed as "book check unit" (BCU, pulsed EMF). Short-term exposures were: (E1) whole-body exposure from the EAS gate when sitting within 3 m; (E2) local exposure to transient IF-EMF while passing through or beside the EAS gate; and (E3) local exposure to a pulsed magnetic field on BCU use. E1-E3 were evaluated based on exposure levels relative to magnetic flux density at the occupational reference level (RL; E1) or as per occupational basic restrictions (BR; E2 and E3) delineated by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2010 guidelines. Exposure indices based on mid-term exposure (D1-D3), assuming exposure according to employment on a weekly basis, were used to assess exposure in actual working conditions. D1 represents continuous exposure from an EAS gate when sitting within 3 m of the gate. D2 and D3 represent repeated transient exposures occurring during gate pass or on the operation of a BCU. A link to a web-based questionnaire was distributed to librarians working at all libraries where the authors had mailed institutional questionnaires (4,073 libraries). Four exposure patterns were defined according to various exposure scenarios. Results: We obtained information on exposure parameters and working conditions from the 548 completed questionnaires. The ICNIRP guideline levels were not exceeded in any of the E1-E3 scenarios. Median of the D1 (% ICNIRP RL × hour/week) was 1, and >85% respondents had values <10. However, the maximum value was 513. Altogether, these results indicate that continuous exposure was low in most cases. The same tendency was observed regarding repeated transient exposure from EM-EAS gates (i.e., the median value for D2 (% ICNIRP BR × gate pass) was 5). However, there were several cases in which D1 and D2 values were >10 times the median. The median of D3 (% ICNIRP BR × BCU operation) was 10, and most respondents' D3 values were greater than their D2 values, although the derived results depended on the assumptions made for the estimation. Conclusion: We conducted an assessment of combined exposures to IF-EMF and pulsed EMF among library workers in Japan by evaluating both short-term exposures (E1-E3) and exposure indices based on mid-term exposures (D1-D3) assuming actual working conditions per questionnaire results. These results provide useful information for future epidemiological studies.


Subject(s)
Electromagnetic Fields , Occupational Exposure , Humans , Japan
2.
Front Public Health ; 10: 871134, 2022.
Article in English | MEDLINE | ID: mdl-35646792

ABSTRACT

Exposure to magnetic fields from the electronic article surveillance (EAS) gate was evaluated in consideration of the application to epidemiological studies of library workers who are exposed continually to intermediate frequency magnetic fields from the EAS gate. Two types of exposures were investigated. One was transient exposure due to passing through or beside the gate and another was chronic exposure in the room. We measured magnetic fields from five EAS gate models which were commonly used in libraries in Japan. Detailed measurements were performed for two of them in consideration of the phase difference of vector components of magnetic flux density. The polarization of the magnetic field in the gate was investigated with the index of ellipticity. The induced electric field in a human body was numerically calculated for exposures to magnetic fields of the two gate models. The results provide a quantitative understanding of exposures during passing through or by the EAS gate. Magnetic field distribution was measured in a large room for one gate model to quantify the chronic exposure of library workers during the work at the desk. It was found that the magnetic field was distributed as a function of the horizontal distance to the nearest gatepost. The 45-point average value BIEC defined by the IEC standard was suggested to be a useful quantity to characterize the magnitude of the magnetic field from the EAS gate. Exposures to different EAS gates are expected to be compared through this quantity without detailed measurements. These results are expected to provide useful means for exposure assessment of epidemiological studies on the association between the IF-EMF exposure and possible health outcomes.


Subject(s)
Electromagnetic Fields , Magnetic Fields , Electronics , Humans , Japan
3.
Environ Int ; 163: 107189, 2022 05.
Article in English | MEDLINE | ID: mdl-35447435

ABSTRACT

Wireless phones (both mobile and cordless) emit not only radiofrequency (RF) electromagnetic fields (EMF) but also extremely low frequency (ELF) magnetic fields, both of which should be considered in epidemiological studies of the possible adverse health effects of use of such devices. This paper describes a unique algorithm, developed for the multinational case-control MOBI-Kids study, that estimates the cumulative specific energy (CSE) and the cumulative induced current density (CICD) in the brain from RF and ELF fields, respectively, for each subject in the study (aged 10-24 years old). Factors such as age, tumour location, self-reported phone models and usage patterns (laterality, call frequency/duration and hands-free use) were considered, as was the prevalence of different communication systems over time. Median CSE and CICD were substantially higher in GSM than 3G systems and varied considerably with location in the brain. Agreement between RF CSE and mobile phone use variables was moderate to null, depending on the communication system. Agreement between mobile phone use variables and ELF CICD was higher overall but also strongly dependent on communication system. Despite ELF dose distribution across the brain being more diffuse than that of RF, high correlation was observed between RF and ELF dose. The algorithm was used to systematically estimate the localised RF and ELF doses in the brain from wireless phones, which were found to be strongly dependent on location and communication system. Analysis of cartographies showed high correlation across phone models and across ages, however diagonal agreement between these cartographies suggest these factors do affect dose distribution to some level. Overall, duration and number of calls may not be adequate proxies of dose, particularly as communication systems available for voice calls tend to become more complex with time.


Subject(s)
Cell Phone , Adolescent , Adult , Brain , Case-Control Studies , Child , Electromagnetic Fields/adverse effects , Environmental Exposure , Humans , Radio Waves/adverse effects , Young Adult
4.
Front Public Health ; 9: 725310, 2021.
Article in English | MEDLINE | ID: mdl-34490200

ABSTRACT

In this paper, human exposures to ultra-wideband (UWB) electromagnetic (EM) pulses in the microwave region are assessed using a frequency-dependent FDTD scheme previously proposed by the authors. Complex permittivity functions of all biological tissues used in the numerical analyses are accurately expressed by the four-term Cole-Cole model. In our method, we apply the fast inverse Laplace transform to determine the time-domain impulse response, utilize the Prony method to find the Z-domain representation, and extract residues and poles for use in the FDTD formulation. Update equations for the electric field are then derived via the Z-transformation. Firstly, we perform reflection and transmission analyses of a multilayer composed of six different biological tissues and then confirm the validity of the proposed method by comparison with analytical results. Finally, numerical dosimetry of various human bodies exposed to EM pulses from the front in the microwave frequency range is performed, and the specific energy absorption is evaluated and compared with that prescribed in international guidelines.


Subject(s)
Human Body , Microwaves , Electromagnetic Phenomena , Humans , Models, Biological , Radiometry
5.
Biomed Opt Express ; 12(3): 1295-1307, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33796354

ABSTRACT

The dielectric constant of the normal corneal tissue of a rabbit eye was obtained in vitro in the range from approximately 0.1 to 1 THz, and the drying process on the eye surface exposed to high-power terahertz waves was investigated by in vivo reflectance measurement using terahertz time-domain spectroscopy. When the rabbit eye was exposed to terahertz waves at 162 GHz for 6 min with an irradiation power of 360 or 480 mW/cm2, the reflectance temporally increased and then decreased with a temperature increase. Based on multiple-reflection calculation using the dielectric constant and anterior segment optical coherence tomography images, those changes in reflectance were attributed to drying of the tear and epithelium of the cornea, respectively. Furthermore, the drying progressed over a temperature increase of around 5°C under our exposure conditions. These findings suggest that the possibility of eye damage increases with the progress of drying and that the setting of the eye surface conditions can be a cause of disagreement between computational and experimental data of absorbed energy under high-level irradiation because reflectance is related to terahertz wave penetration in the eye tissue. The time-domain spectroscopic measurements were useful for the acquisition of the dielectric constant as well as for the real-time monitoring of the eye conditions during exposure measurement.

6.
Bioelectromagnetics ; 40(3): 150-159, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30920674

ABSTRACT

The purpose of the study involves measuring the threshold for electric currents (i.e., current perception threshold or CPT) under several stimulating current frequencies. Specifically, current perception threshold (CPT) was measured in 53 healthy volunteers between the ages of 21 and 67. The stimulation currents were applied on the right index finger with stimulus frequencies in the range of 50 Hz - 300 kHz. The method of limits and method of constant stimuli were combined to measure the CPT. In a manner consistent with the findings obtained by previous studies, the results indicated that CPT was higher in men than in women and in older individuals than in young subjects. Bioelectromagnetics. 9999:XX-XX, 2019. © 2019 Bioelectromagnetics Society.


Subject(s)
Electric Stimulation , Healthy Volunteers , Adult , Aged , Female , Humans , Japan , Male , Middle Aged , Sensory Thresholds , Young Adult
7.
Phys Med Biol ; 64(4): 045004, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30719982

ABSTRACT

This paper aims to implement average head models of Korean males and investigate age-related differences in the brain for exposure from radiation from mobile phones. Four male head models composed of a total of 69 structures were developed through a statistical investigation of the anatomical morphology for the age groups of 6, 9, 15 and 20-24 years in age, which are named KR-6, KR-9, KR-15, and KR-22 herein. Three numerical bar phone models with a dual-band built-in antenna were applied to calculate the specific absorption rate (SAR) in the brain; the body lengths of models M avg and M long have the mean value and upper 5th percentile value of commercial bar phone models, respectively, with an antenna at the bottom, whereas M rev has an antenna on top of the phone body, which is the same as in M avg but rotated 180°. The cheek and tilt positions were employed for SAR simulations. As a result, a higher peak spatial-average SAR (psSAR) was observed in the brain for the child groups of KR-6 and KR-9 than for the adult groups of KR-15 and KR-22. In most configurations, the position-averaged psSAR10 g in the child brain was 62% (M long, 835 MHz), 61% (M avg, 835 MHz), 102% (M long, 1850 MHz), 108% (M avg, 1850 MHz), and 125% (M rev, 1850 MHz) higher than in the adult brain. The higher frequency of 1850 MHz showed a wider difference in the brain psSAR between the child and adult groups owing to the shorter penetration depth. When a long phone with an antenna at the bottom operates at a higher frequency, it significantly reduces the brain exposure.


Subject(s)
Brain/radiation effects , Cell Phone , Head , Radiation Dosage , Radiation Exposure/adverse effects , Adolescent , Adult , Child , Humans , Male , Radio Waves/adverse effects , Republic of Korea , Young Adult
8.
J Expo Sci Environ Epidemiol ; 28(2): 166-172, 2018 03.
Article in English | MEDLINE | ID: mdl-28000687

ABSTRACT

This study examined changes in recall accuracy for mobile phone calls over a long period. Japanese students' actual call statuses were monitored for 1 month using software-modified phones (SMPs). Three face-to-face interviews were conducted to obtain information regarding self-reported call status during the monitoring period: first interview: immediately after the monitoring period; second interview: after 10-12 months; third interview: after 48-55 months. Using the SMP records as the "gold standard", phone call recall accuracy was assessed for each interview. Data for 94 participants were analyzed. The number of calls made was underestimated considerably and the duration of calls was overestimated slightly in all interviews. Agreement between self-report and SMP records regarding the number of calls, duration of calls and laterality (i.e., use of the dominant ear while making calls) gradually deteriorated with the increase in the interval following the monitoring period (number of calls: first interview: Pearson's r=0.641, third interview: 0.396; duration of calls: first interview: Pearson's r=0.763, third interview: 0.356; laterality: first interview: weighted-κ=0.677, third interview: 0.448). Thus, recall accuracy for mobile phone calls would be consistently imperfect over a long period, and the results of related epidemiological studies should be interpreted carefully.


Subject(s)
Cell Phone/statistics & numerical data , Mental Recall , Adolescent , Adult , Female , Follow-Up Studies , Humans , Interviews as Topic , Japan , Male , Reproducibility of Results , Self Report , Software , Students , Young Adult
9.
Phys Med Biol ; 62(17): 6993-7010, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28742056

ABSTRACT

In this study, we present an assessment of human-body exposure to an electromagnetic field at frequencies ranging from 10 GHz to 1 THz. The energy absorption and temperature elevation were assessed by solving boundary value problems of the one-dimensional Maxwell equations and a bioheat equation for a multilayer plane model. Dielectric properties were measured [Formula: see text] at frequencies of up to 1 THz at body temperature. A Monte Carlo simulation was conducted to assess variations of the transmittance into a skin surface and temperature elevation inside a body by considering the variation of the tissue thickness due to individual differences among human bodies. Furthermore, the impact of the dielectric properties of adipose tissue on temperature elevation, for which large discrepancies between our present measurement results and those in past works were observed, was also examined. We found that the dielectric properties of adipose tissue do not impact on temperature elevation at frequencies over 30 GHz. The potential risk of skin burn was discussed on the basis of the temperature elevation in millimeter-wave and terahertz-wave exposure. Furthermore, the consistency of the basic restrictions in the international guidelines set by ICNIRP was discussed.


Subject(s)
Electromagnetic Fields , Models, Biological , Monte Carlo Method , Skin/radiation effects , Body Temperature , Humans , Radiation Dosage
10.
Environ Int ; 101: 59-69, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28126406

ABSTRACT

This paper describes measurements and computational modelling carried out in the MOBI-Kids case-control study to assess the extremely low frequency (ELF) exposure of the brain from use of mobile and cordless phones. Four different communication systems were investigated: Global System for Mobile (GSM), Universal Mobile Telecommunications System (UMTS), Digital Enhanced Cordless Telecommunications (DECT) and Wi-Fi Voice over Internet Protocol (VoIP). The magnetic fields produced by the phones during transmission were measured under controlled laboratory conditions, and an equivalent loop was fitted to the data to produce three-dimensional extrapolations of the field. Computational modelling was then used to calculate the induced current density and electric field strength in the brain resulting from exposure to these magnetic fields. Human voxel phantoms of four different ages were used: 8, 11, 14 and adult. The results indicate that the current densities induced in the brain during DECT calls are likely to be an order of magnitude lower than those generated during GSM calls but over twice that during UMTS calls. The average current density during Wi-Fi VoIP calls was found to be lower than for UMTS by 30%, but the variability across the samples investigated was high. Spectral contributions were important to consider in relation to current density, particularly for DECT phones. This study suggests that the spatial distribution of the ELF induced current densities in brain tissues is determined by the physical characteristics of the phone (in particular battery position) while the amplitude is mainly dependent on communication system, thus providing a feasible basis for assessing ELF exposure in the epidemiological study. The number of phantoms was not large enough to provide definitive evidence of an increase of induced current density with age, but the data that are available suggest that, if present, the effect is likely to be very small.


Subject(s)
Cell Phone/instrumentation , Electromagnetic Fields/adverse effects , Brain/radiation effects , Case-Control Studies , Child , Child Health , Computer Simulation , Environmental Exposure , Humans , Radiation Dosage , Radiation Monitoring , Telecommunications
11.
J Radiat Res ; 58(1): 48-58, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27694283

ABSTRACT

In everyday life, people are exposed to radiofrequency (RF) electromagnetic fields (EMFs) with multiple frequencies. To evaluate the possible adverse effects of multifrequency RF EMFs, we performed an experiment in which pregnant rats and their delivered offspring were simultaneously exposed to eight different communication signal EMFs (two of 800 MHz band, two of 2 GHz band, one of 2.4 GHz band, two of 2.5 GHz band and one of 5.2 GHz band). Thirty six pregnant Sprague-Dawley (SD) 10-week-old rats were divided into three groups of 12 rats: one control (sham exposure) group and two experimental (low- and high-level RF EMF exposure) groups. The whole body of the mother rats was exposed to the RF EMFs for 20 h per day from Gestational Day 7 to weaning, and F1 offspring rats (46-48 F1 pups per group) were then exposed up to 6 weeks of age also for 20 h per day. The parameters evaluated included the growth, gestational condition and organ weights of the dams; the survival rates, development, growth, physical and functional development, memory function, and reproductive ability of the F1 offspring; and the embryotoxicity and teratogenicity in the F2 rats. No abnormal findings were observed in the dams or F1 offspring exposed to the RF EMFs or to the F2 offspring for any of the parameters evaluated. Thus, under the conditions of the present experiment, simultaneous whole-body exposure to eight different communication signal EMFs at frequencies between 800 MHz and 5.2 GHz did not show any adverse effects on pregnancy or on the development of rats.


Subject(s)
Electromagnetic Fields/adverse effects , Fetus/radiation effects , Radio Waves/adverse effects , Weaning , Whole-Body Irradiation , Animals , Behavior, Animal/radiation effects , Crosses, Genetic , Female , Fertility/radiation effects , Maze Learning/radiation effects , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Rats, Sprague-Dawley , Reproduction/radiation effects
12.
J Expo Sci Environ Epidemiol ; 26(6): 566-574, 2016 11.
Article in English | MEDLINE | ID: mdl-25783661

ABSTRACT

This study aimed to elucidate the recall accuracy of mobile phone calls among young people using new software-modified phone (SMP) technology. A total of 198 Japanese students aged between 10 and 24 years were instructed to use a SMP for 1 month to record their actual call statuses. Ten to 12 months after this period, face-to-face interviews were conducted to obtain the self-reported call statuses during the monitoring period. Using the SMP record as the gold standard of validation, the recall accuracy of phone calls was evaluated. A total of 19% of the participants (34/177) misclassified their laterality (i.e., the dominant side of ear used while making calls), with the level of agreement being moderate (κ-statistics, 0.449). The level of agreement between the self-reports and SMP records was relatively good for the duration of calls (Pearson's r, 0.620), as compared with the number of calls (Pearson's r, 0.561). The recall was prone to small systematic and large random errors for both the number and duration of calls. Such a large random recall error for the amount of calls and misclassification of laterality suggest that the results of epidemiological studies of mobile phone use based on self-assessment should be interpreted cautiously.


Subject(s)
Cell Phone , Ear , Mental Recall , Adolescent , Adult , Cell Phone/statistics & numerical data , Child , Female , Humans , Interviews as Topic , Japan , Logistic Models , Male , Reproducibility of Results , Self Report , Software , Students , Young Adult
13.
Toxicol Rep ; 3: 135-140, 2016.
Article in English | MEDLINE | ID: mdl-28959531

ABSTRACT

The embryotoxic effect of intermediate frequency (IF) magnetic field (MF) was evaluated using murine embryonic stem (ES) cells and fibroblast cells based on the embryonic stem cell test (EST). The cells were exposed to 21 kHz IF-MF up to magnetic flux density of 3.9 mT during the cell proliferation process (7 days) or the cell differentiation process (10 days) during which an embryonic body differentiated into myocardial cells. As a result, there was no significant difference in the cell proliferation between sham- and IF-MF-exposed cells for both ES and fibroblast cells. Similarly, the ratio of the number of ES-derived cell aggregates differentiated to myocardial cells to total number of cell aggregates was not changed by IF-MF exposure. In addition, the expressions of a cardiomyocytes-specific gene, Myl2, and an early developmental gene, Hba-x, in the exposed cell aggregate were not altered. Since the magnetic flux density adopted in this study is much higher than that generated by an inverter of the electrical railway, an induction heating (IH) cooktop, etc. in our daily lives, these results suggested that IF-MF in which the public is exposed to in general living environment would not have embryotoxic effect.

14.
In Vivo ; 29(5): 561-7, 2015.
Article in English | MEDLINE | ID: mdl-26359415

ABSTRACT

The biological effects of exposing the developing brain to radiofrequency electromagnetic fields (RF) are still unclear. Our experiments investigated whether three inflammation-related, microcirculatory parameters in juvenile and young adult rats were modified during local cortex exposure to RF under non-thermal conditions. The cortex tissue was locally exposed to 1457 MHz RF at an averaged specific absorption rate of 2.0 W/kg in the target area for 50 min and variations of pial venule parameter were measured directly in vivo. There was no significant difference in hemodynamics, plasma velocity or vessel diameter, between exposed and sham-exposed groups for either rat development stage. No increase related to RF exposure was found in leukocyte adhesion to endothelial cells in any microvessels observed. These findings suggest that RF is unlikely to initiate inflammatory responses, at least under these exposure conditions.


Subject(s)
Cerebral Cortex/blood supply , Cerebral Cortex/radiation effects , Hemodynamics , Inflammation/physiopathology , Microcirculation , Microwaves , Animals , Blood Flow Velocity , Cell Adhesion , Cerebral Cortex/pathology , Cerebrovascular Circulation , Disease Models, Animal , Inflammation/pathology , Leukocyte Rolling , Leukocytes/physiology , Male , Rats , Temperature
15.
In Vivo ; 29(3): 351-7, 2015.
Article in English | MEDLINE | ID: mdl-25977380

ABSTRACT

Little information is available about the effects of exposure to radiofrequency electromagnetic fields (RF) on cerebral microcirculation during rat developmental stages. We investigated whether the permeability of the blood-brain barrier (BBB) in juvenile and young adult rats was modified during local cortex exposure to RF under non-thermal conditions. The cortex tissue targeted was locally exposed to 1457 MHz RF at an average specific absorption rate of 2.0 W/kg in the target area for 50 min and permeability changes in the BBB of the pia mater were measured directly, using intravital fluorescence microscopy. There was no significant difference in extravasation of intravenously-injected dye between exposed and sham-exposed groups of either category of rats. No histological evidence of albumin leakage was found in any of the brains just after exposure, indicating that no traces of BBB disruption remained. These findings suggest that no dynamic changes occurred in BBB permeability of the rats at either of these developmental stages, even during local RF exposure at non-thermal levels.


Subject(s)
Blood-Brain Barrier/metabolism , Capillary Permeability/radiation effects , Microwaves , Animals , Blood-Brain Barrier/radiation effects , Dextrans/pharmacokinetics , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/pharmacokinetics , Fluorescent Dyes/pharmacokinetics , Male , Rats, Sprague-Dawley
16.
In Vivo ; 29(2): 207-15, 2015.
Article in English | MEDLINE | ID: mdl-25792647

ABSTRACT

The aim of this study was to determine whether cerebral microcirculatory parameters in rats were modified during local cortex exposure to a radiofrequency electromagnetic field (RF) under non-thermal conditions. The cortex tissue targeted was locally exposed to 1439 MHz RF using a figure-8 loop antenna at an averaged specific absorption rate of 2.0 W/kg in the target area for 50 min. Three microcirculatory parameters related to cerebral inflammation were measured by the cranial window method in real-time under RF exposure. No extravasation of intravenously injected fluorescent dye was observed during RF exposure. There was no significant difference either in pial venule blood flow velocity or diameter between exposed and sham-exposed rats. Histological evaluation for the brain immediately after RF exposure did not reveal any serum albumin leakage sites or degenerate neurons. These findings suggest that no dynamic changes occurred in cerebral microcirculation even during local cortex exposure under these conditions.


Subject(s)
Cerebral Cortex/blood supply , Cerebral Cortex/radiation effects , Cerebrovascular Circulation/radiation effects , Microcirculation/radiation effects , Microwaves , Animals , Blood Flow Velocity , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects , Electromagnetic Fields , Hemodynamics/radiation effects , Male , Permeability , Rats , Temperature
17.
Bioelectromagnetics ; 35(7): 497-511, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25196377

ABSTRACT

The present experimental study was carried out with rats to evaluate the effects of whole body exposure to 2.14 GHz band code division multiple access (W-CDMA) signals for 20 h a day, over three generations. The average specific absorption rate (SAR, in unit of W/kg) for dams was designed at three levels: high (<0.24 W/kg), low (<0.08 W/kg), and 0 (sham exposure). Pregnant mothers (4 rats/group) were exposed from gestational day (GD) 7 to weaning and then their offspring (F1 generation, 4 males and 4 females/dam, respectively) were continuously exposed until 6 weeks of age. The F1 females were mated with F1 males at 11 weeks old, and then starting from GD 7, they were exposed continuously to the electromagnetic field (EMF; one half of the F1 offspring was used for mating, that is, two of each sex per dam and 8 males and 8 females/group, except for all offspring for the functional development tests). This protocol was repeated in the same manner on pregnant F2 females and F3 pups; the latter were killed at 10 weeks of age. No abnormalities were observed in the mother rats (F0 , F1 , and F2 ) and in the offspring (F1 , F2 , and F3 ) in any biological parameters, including neurobehavioral function. Thus, it was concluded that under the experimental conditions applied, multigenerational whole body exposure to 2.14 GHz W-CDMA signals for 20 h/day did not cause any adverse effects on the F1 , F2 , and F3 offspring.


Subject(s)
Brain/radiation effects , Cell Phone , Electromagnetic Fields , Animals , Body Weight/radiation effects , Brain/anatomy & histology , Brain/physiology , Exploratory Behavior/radiation effects , Female , Male , Maternal Exposure , Maze Learning/radiation effects , Motor Activity/radiation effects , Organ Size , Paternal Exposure , Radiation Genetics , Radiometry , Rats, Sprague-Dawley , Reproduction/radiation effects
18.
Bioelectromagnetics ; 34(8): 589-98, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24037832

ABSTRACT

In this study, we investigated subjective and objective effects of mobile phones using a Wideband Code Division Multiple Access (W-CDMA)-like system on human sleep. Subjects were 19 volunteers. Real or sham electromagnetic field (EMF) exposures for 3 h were performed before their usual sleep time on 3 consecutive days. They were exposed to real EMF on the second or third experimental day in a double-blind design. Sleepiness and sleep insufficiency were evaluated the next morning. Polysomnograms were recorded for analyses of the sleep variables and power spectra of electroencephalograms (EEG). No significant differences were observed between the two conditions in subjective feelings. Sleep parameters including sleep stage percentages and EEG power spectra did not differ significantly between real and sham exposures. We conclude that continuous wave EMF exposure for 3 h from a W-CDMA-like system has no detectable effects on human sleep.


Subject(s)
Cell Phone , Electromagnetic Fields/adverse effects , Sleep/radiation effects , Adult , Electroencephalography , Female , Humans , Male , Polysomnography , Self Report , Sleep/physiology , Young Adult
19.
Phys Med Biol ; 57(1): 143-54, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22127341

ABSTRACT

A 2 GHz whole-body exposure to rats over a multigeneration has been conducted as part of bio-effect research in Japan. In this study, the rats moved freely in the cage inside the exposure system. From observation of the activity of rats in the cage, we found that the rats do not stay in each position with uniform possibility. In order to determine the specific absorption rate (SAR) during the entire exposure period with high accuracy, we present a new approach to statistically determine the SAR level in an exposure system. First, we divided the rat cage in the exposure system into several small areas, and derived the fraction of time the rats spent in each small area based on the classification of the documentary photos of rat activity. Then, using the fraction of time spent in each small area as a weighting factor, we calculated the statistical characteristics of the whole-body average SAR for pregnant rats and young rats during the entire exposure period. As a result, this approach gave the statistical distribution as well as the corresponding mean value, median value and mode value for the whole-body SAR so that we can reasonably clarify the relationship between the exposure level and possible biological effect.


Subject(s)
Radiation Dosage , Whole-Body Irradiation , Absorption , Animals , Animals, Newborn , Behavior, Animal/radiation effects , Female , Pregnancy , Rats , Time Factors , Weaning
20.
Bioelectromagnetics ; 32(8): 634-43, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21695709

ABSTRACT

The three-dimensional distribution of the specific absorption rate of energy (SAR) in phantom models was analysed to detect clusters of mobile phones producing similar spatial deposition of energy in the head. The clusters' characteristics were described from the phones external features, frequency band and communication protocol. Compliance measurements with phones in cheek and tilt positions, and on the left and right side of a physical phantom were used. Phones used the Personal Digital Cellular (PDC), Code division multiple access One (CdmaOne), Global System for Mobile Communications (GSM) and Nordic Mobile Telephony (NMT) communication systems, in the 800, 900, 1500 and 1800 MHz bands. Each phone's measurements were summarised by the half-ellipsoid in which the SAR values were above half the maximum value. Cluster analysis used the Partitioning Around Medoids algorithm. The dissimilarity measure was based on the overlap of the ellipsoids, and the Manhattan distance was used for robustness analysis. Within the 800 MHz frequency band, and in part within the 900 MHz and the 1800 MHz frequency bands, weak clustering was obtained for the handset shape (bar phone, flip with top and flip with central antennas), but only in specific positions (tilt or cheek). On measurements of 120 phones, the three-dimensional distribution of SAR in phantom models did not appear to be related to particular external phone characteristics or measurement characteristics, which could be used for refining the assessment of exposure to radiofrequency energy within the brain in epidemiological studies such as the Interphone.


Subject(s)
Cell Phone , Electromagnetic Fields , Environmental Exposure/analysis , Environmental Monitoring/methods , Radio Waves/adverse effects , Absorption , Brain/radiation effects , Cluster Analysis , Computer Simulation , Electromagnetic Fields/adverse effects , Epidemiologic Studies , Head/radiation effects , Humans , Models, Biological , Phantoms, Imaging , Radiation Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...