Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Softw Eng Appl ; 15(6): 197-207, 2022 Jun.
Article in English | MEDLINE | ID: mdl-36568682

ABSTRACT

Within the last few decades, increases in computational resources have contributed enormously to the progress of science and engineering (S & E). To continue making rapid advancements, the S & E community must be able to access computing resources. One way to provide such resources is through High-Performance Computing (HPC) centers. Many academic research institutions offer their own HPC Centers but struggle to make the computing resources easily accessible and user-friendly. Here we present SHABU, a RESTful Web API framework that enables S & E communities to access resources from Boston University's Shared Computing Center (SCC). The SHABU requirements are derived from the use cases described in this work.

2.
J Chem Inf Model ; 62(20): 4937-4954, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36195573

ABSTRACT

Despite the growing number of G protein-coupled receptor (GPCR) structures, only 39 structures have been cocrystallized with allosteric inhibitors. These structures have been studied by protein mapping using the FTMap server, which determines the clustering of small organic probe molecules distributed on the protein surface. The method has found druggable sites overlapping with the cocrystallized allosteric ligands in 21 GPCR structures. Mapping of Alphafold2 generated models of these proteins confirms that the same sites can be identified without the presence of bound ligands. We then mapped the 394 GPCR X-ray structures available at the time of the analysis (September 2020). Results show that for each of the 21 structures with bound ligands there exist many other GPCRs that have a strong binding hot spot at the same location, suggesting potential allosteric sites in a large variety of GPCRs. These sites cluster at nine distinct locations, and each can be found in many different proteins. However, ligands binding at the same location generally show little or no similarity, and the amino acid residues interacting with these ligands also differ. Results confirm the possibility of specifically targeting these sites across GPCRs for allosteric modulation and help to identify the most likely binding sites among the limited number of potential locations. The FTMap server is available free of charge for academic and governmental use at https://ftmap.bu.edu/.


Subject(s)
Amino Acids , Receptors, G-Protein-Coupled , Allosteric Site , Ligands , Binding Sites , Receptors, G-Protein-Coupled/chemistry , Allosteric Regulation
3.
Curr Opin Struct Biol ; 75: 102396, 2022 08.
Article in English | MEDLINE | ID: mdl-35636004

ABSTRACT

An increasing number of medically important proteins are challenging drug targets because their binding sites are too shallow or too polar, are cryptic and thus not detectable without a bound ligand or located in a protein-protein interface. While such proteins may not bind druglike small molecules with sufficiently high affinity, they are frequently druggable using novel therapeutic modalities. The need for such modalities can be determined by experimental or computational fragment based methods. Computational mapping by mixed solvent molecular dynamics simulations or the FTMap server can be used to determine binding hot spots. The strength and location of the hot spots provide very useful information for selecting potentially successful approaches to drug discovery.


Subject(s)
Molecular Dynamics Simulation , Proteins , Binding Sites , Drug Discovery , Ligands , Protein Binding , Proteins/chemistry
4.
ACS Med Chem Lett ; 12(8): 1318-1324, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34413962

ABSTRACT

Botulinum neurotoxins (BoNTs) are extremely toxic and have been deemed a Tier 1 potential bioterrorism agent. The most potent and persistent of the BoNTs is the "A" serotype, with strategies to counter its etiology focused on designing small-molecule inhibitors of its light chain (LC), a zinc-dependent metalloprotease. The successful structure-based drug design of inhibitors has been confounded as the LC is highly flexible with significant morphological changes occurring upon inhibitor binding. To achieve greater success, previous and new cocrystal structures were evaluated from the standpoint of inhibitor enantioselectivity and their effect on active-site morphology. Based upon these structural insights, we designed inhibitors that were predicted to take advantage of π-π stacking interactions present in a cryptic hydrophobic subpocket. Structure-activity relationships were defined, and X-ray crystal structures and docking models were examined to rationalize the observed potency differences between inhibitors.

6.
Nat Commun ; 12(1): 3201, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045440

ABSTRACT

Fragment-based drug design has introduced a bottom-up process for drug development, with improved sampling of chemical space and increased effectiveness in early drug discovery. Here, we combine the use of pharmacophores, the most general concept of representing drug-target interactions with the theory of protein hotspots, to develop a design protocol for fragment libraries. The SpotXplorer approach compiles small fragment libraries that maximize the coverage of experimentally confirmed binding pharmacophores at the most preferred hotspots. The efficiency of this approach is demonstrated with a pilot library of 96 fragment-sized compounds (SpotXplorer0) that is validated on popular target classes and emerging drug targets. Biochemical screening against a set of GPCRs and proteases retrieves compounds containing an average of 70% of known pharmacophores for these targets. More importantly, SpotXplorer0 screening identifies confirmed hits against recently established challenging targets such as the histone methyltransferase SETD2, the main protease (3CLPro) and the NSP3 macrodomain of SARS-CoV-2.


Subject(s)
Coronavirus 3C Proteases/chemistry , Coronavirus Papain-Like Proteases/chemistry , Drug Development/methods , Drug Discovery/methods , High-Throughput Screening Assays/methods , Histone-Lysine N-Methyltransferase/chemistry , Animals , Cell Survival , Chlorocebus aethiops , Computational Chemistry , Crystallography, X-Ray , Databases, Protein , Drug Design , HEK293 Cells , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Protein Binding , Receptors, G-Protein-Coupled/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Small Molecule Libraries , Vero Cells
7.
J Chem Inf Model ; 60(12): 6612-6623, 2020 12 28.
Article in English | MEDLINE | ID: mdl-33291870

ABSTRACT

Binding hot spots are regions of proteins that, due to their potentially high contribution to the binding free energy, have high propensity to bind small molecules. We present benchmark sets for testing computational methods for the identification of binding hot spots with emphasis on fragment-based ligand discovery. Each protein structure in the set binds a fragment, which is extended into larger ligands in other structures without substantial change in its binding mode. Structures of the same proteins without any bound ligand are also collected to form an unbound benchmark. We also discuss a set developed by Astex Pharmaceuticals for the validation of hot and warm spots for fragment binding. The set is based on the assumption that a fragment that occurs in diverse ligands in the same subpocket identifies a binding hot spot. Since this set includes only ligand-bound proteins, we added a set with unbound structures. All four sets were tested using FTMap, a computational analogue of fragment screening experiments to form a baseline for testing other prediction methods, and differences among the sets are discussed.


Subject(s)
Benchmarking , Proteins , Binding Sites , Ligands , Protein Binding , Proteins/metabolism
8.
Structure ; 28(2): 223-235.e2, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31810712

ABSTRACT

Many proteins in their unbound structures have cryptic sites that are not appropriately sized for drug binding. We consider here 32 proteins from the recently published CryptoSite set with validated cryptic sites, and study whether the sites remain cryptic in all available X-ray structures of the proteins solved without any ligand bound near the sites. It was shown that only few of these proteins have binding pockets that never form without ligand binding. Sites that are cryptic in some structures but spontaneously form in others are also rare. In most proteins the forming of pockets is affected by mutations or ligand binding at locations far from the cryptic site. To further explore these mechanisms, we applied adiabatic biased molecular dynamics simulations to guide the proteins from their ligand-free structures to ligand-bound conformations, and studied the distribution of druggability scores of the pockets located at the cryptic sites.


Subject(s)
Proteins/chemistry , Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
9.
Biochemistry ; 59(4): 563-581, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31851823

ABSTRACT

Development of small molecule inhibitors of protein-protein interactions (PPIs) is hampered by our poor understanding of the druggability of PPI target sites. Here, we describe the combined application of alanine-scanning mutagenesis, fragment screening, and FTMap computational hot spot mapping to evaluate the energetics and druggability of the highly charged PPI interface between Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2 like 2 (Nrf2), an important drug target. FTMap identifies four binding energy hot spots at the active site. Only two of these are exploited by Nrf2, which alanine scanning of both proteins shows to bind primarily through E79 and E82 interacting with KEAP1 residues S363, R380, R415, R483, and S508. We identify fragment hits and obtain X-ray complex structures for three fragments via crystal soaking using a new crystal form of KEAP1. Combining these results provides a comprehensive and quantitative picture of the origins of binding energy at the interface. Our findings additionally reveal non-native interactions that might be exploited in the design of uncharged synthetic ligands to occupy the same site on KEAP1 that has evolved to bind the highly charged DEETGE binding loop of Nrf2. These include π-stacking with KEAP1 Y525 and interactions at an FTMap-identified hot spot deep in the binding site. Finally, we discuss how the complementary information provided by alanine-scanning mutagenesis, fragment screening, and computational hot spot mapping can be integrated to more comprehensively evaluate PPI druggability.


Subject(s)
Kelch-Like ECH-Associated Protein 1/chemistry , NF-E2-Related Factor 2/chemistry , Binding Sites/drug effects , Binding Sites/physiology , Drug Discovery , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Ligands , NF-E2-Related Factor 2/metabolism , Protein Binding/drug effects , Protein Binding/physiology , Protein Domains/drug effects , Protein Domains/physiology , Protein Interaction Domains and Motifs/drug effects , Small Molecule Libraries/pharmacology
11.
Sci Rep ; 9(1): 6180, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30992500

ABSTRACT

Allosteric modulation of G protein-coupled receptors represent a promising mechanism of pharmacological intervention. Dramatic developments witnessed in the structural biology of membrane proteins continue to reveal that the binding sites of allosteric modulators are widely distributed, including along protein surfaces. Here we restrict consideration to intrahelical and intracellular sites together with allosteric conformational locks, and show that the protein mapping tools FTMap and FTSite identify 83% and 88% of such experimentally confirmed allosteric sites within the three strongest sites found. The methods were also able to find partially hidden allosteric sites that were not fully formed in X-ray structures crystallized in the absence of allosteric ligands. These results confirm that the intrahelical sites capable of binding druglike allosteric modulators are among the strongest ligand recognition sites in a large fraction of GPCRs and suggest that both FTMap and FTSite are useful tools for identifying allosteric sites and to aid in the design of such compounds in a range of GPCR targets.


Subject(s)
Allosteric Site , Receptors, G-Protein-Coupled/chemistry , Allosteric Regulation , Animals , Crystallography, X-Ray , Databases, Protein , Humans , Ligands , Models, Molecular , Protein Conformation , Receptors, G-Protein-Coupled/metabolism
12.
Curr Opin Chem Biol ; 44: 1-8, 2018 06.
Article in English | MEDLINE | ID: mdl-29800865

ABSTRACT

Many proteins in their unbound structures lack surface pockets appropriately sized for drug binding. Hence, a variety of experimental and computational tools have been developed for the identification of cryptic sites that are not evident in the unbound protein but form upon ligand binding, and can provide tractable drug target sites. The goal of this review is to discuss the definition, detection, and druggability of such sites, and their potential value for drug discovery. Novel methods based on molecular dynamics simulations are particularly promising and yield a large number of transient pockets, but it has been shown that only a minority of such sites are generally capable of binding ligands with substantial affinity. Based on recent studies, current methodology can be improved by combining molecular dynamics with fragment docking and machine learning approaches.


Subject(s)
Binding Sites/drug effects , Drug Discovery/methods , Proteins/chemistry , Animals , Computer-Aided Design , Humans , Ligands , Machine Learning , Molecular Docking Simulation , Molecular Dynamics Simulation , Proteins/metabolism
13.
Proc Natl Acad Sci U S A ; 115(15): E3416-E3425, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29581267

ABSTRACT

Molecular dynamics (MD) simulations of proteins reveal the existence of many transient surface pockets; however, the factors determining what small subset of these represent druggable or functionally relevant ligand binding sites, called "cryptic sites," are not understood. Here, we examine multiple X-ray structures for a set of proteins with validated cryptic sites, using the computational hot spot identification tool FTMap. The results show that cryptic sites in ligand-free structures generally have a strong binding energy hot spot very close by. As expected, regions around cryptic sites exhibit above-average flexibility, and close to 50% of the proteins studied here have unbound structures that could accommodate the ligand without clashes. Nevertheless, the strong hot spot neighboring each cryptic site is almost always exploited by the bound ligand, suggesting that binding may frequently involve an induced fit component. We additionally evaluated the structural basis for cryptic site formation, by comparing unbound to bound structures. Cryptic sites are most frequently occluded in the unbound structure by intrusion of loops (22.5%), side chains (19.4%), or in some cases entire helices (5.4%), but motions that create sites that are too open can also eliminate pockets (19.4%). The flexibility of cryptic sites frequently leads to missing side chains or loops (12%) that are particularly evident in low resolution crystal structures. An interesting observation is that cryptic sites formed solely by the movement of side chains, or of backbone segments with fewer than five residues, result only in low affinity binding sites with limited use for drug discovery.


Subject(s)
Proteins/chemistry , Binding Sites , Ligands , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
14.
JAMA Oncol ; 3(8): 1094-1101, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28426845

ABSTRACT

IMPORTANCE: Glioblastoma is an incurable tumor, and the therapeutic options for patients are limited. OBJECTIVE: To determine whether the systemic administration of HER2-specific chimeric antigen receptor (CAR)-modified virus-specific T cells (VSTs) is safe and whether these cells have antiglioblastoma activity. DESIGN, SETTING, AND PARTICIPANTS: In this open-label phase 1 dose-escalation study conducted at Baylor College of Medicine, Houston Methodist Hospital, and Texas Children's Hospital, patients with progressive HER2-positive glioblastoma were enrolled between July 25, 2011, and April 21, 2014. The duration of follow-up was 10 weeks to 29 months (median, 8 months). INTERVENTIONS: Monotherapy with autologous VSTs specific for cytomegalovirus, Epstein-Barr virus, or adenovirus and genetically modified to express HER2-CARs with a CD28.ζ-signaling endodomain (HER2-CAR VSTs). MAIN OUTCOMES AND MEASURES: Primary end points were feasibility and safety. The key secondary end points were T-cell persistence and their antiglioblastoma activity. RESULTS: A total of 17 patients (8 females and 9 males; 10 patients ≥18 years [median age, 60 years; range, 30-69 years] and 7 patients <18 years [median age, 14 years; range, 10-17 years]) with progressive HER2-positive glioblastoma received 1 or more infusions of autologous HER2-CAR VSTs (1 × 106/m2 to 1 × 108/m2) without prior lymphodepletion. Infusions were well tolerated, with no dose-limiting toxic effects. HER2-CAR VSTs were detected in the peripheral blood for up to 12 months after the infusion by quantitative real-time polymerase chain reaction. Of 16 evaluable patients (9 adults and 7 children), 1 had a partial response for more than 9 months, 7 had stable disease for 8 weeks to 29 months, and 8 progressed after T-cell infusion. Three patients with stable disease are alive without any evidence of progression during 24 to 29 months of follow-up. For the entire study cohort, median overall survival was 11.1 months (95% CI, 4.1-27.2 months) from the first T-cell infusion and 24.5 months (95% CI, 17.2-34.6 months) from diagnosis. CONCLUSIONS AND RELEVANCE: Infusion of autologous HER2-CAR VSTs is safe and can be associated with clinical benefit for patients with progressive glioblastoma. Further evaluation of HER2-CAR VSTs in a phase 2b study is warranted as a single agent or in combination with other immunomodulatory approaches for glioblastoma.


Subject(s)
Brain Neoplasms/therapy , Glioblastoma/therapy , T-Lymphocytes/transplantation , Adenoviridae/immunology , Adolescent , Adult , Aged , Child , Cytomegalovirus/immunology , Female , Herpesvirus 4, Human/immunology , Humans , Male , Middle Aged , Receptor, ErbB-2 , Receptors, Antigen, T-Cell , T-Lymphocytes/immunology , Treatment Outcome
15.
J Clin Invest ; 126(8): 3036-52, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27427982

ABSTRACT

In preclinical models of glioblastoma, antigen escape variants can lead to tumor recurrence after treatment with CAR T cells that are redirected to single tumor antigens. Given the heterogeneous expression of antigens on glioblastomas, we hypothesized that a bispecific CAR molecule would mitigate antigen escape and improve the antitumor activity of T cells. Here, we created a CAR that joins a HER2-binding scFv and an IL13Rα2-binding IL-13 mutein to make a tandem CAR exodomain (TanCAR) and a CD28.ζ endodomain. We determined that patient TanCAR T cells showed distinct binding to HER2 or IL13Rα2 and had the capability to lyse autologous glioblastoma. TanCAR T cells exhibited activation dynamics that were comparable to those of single CAR T cells upon encounter of HER2 or IL13Rα2. We observed that TanCARs engaged HER2 and IL13Rα2 simultaneously by inducing HER2-IL13Rα2 heterodimers, which promoted superadditive T cell activation when both antigens were encountered concurrently. TanCAR T cell activity was more sustained but not more exhaustible than that of T cells that coexpressed a HER2 CAR and an IL13Rα2 CAR, T cells with a unispecific CAR, or a pooled product. In a murine glioblastoma model, TanCAR T cells mitigated antigen escape, displayed enhanced antitumor efficacy, and improved animal survival. Thus, TanCAR T cells show therapeutic potential to improve glioblastoma control by coengaging HER2 and IL13Rα2 in an augmented, bivalent immune synapse that enhances T cell functionality and reduces antigen escape.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , Interleukin-13 Receptor alpha2 Subunit/metabolism , Receptor, ErbB-2/metabolism , T-Lymphocytes/metabolism , Tumor Escape , Animals , Antigens, Neoplasm/metabolism , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Immunotherapy, Adoptive , Interleukin-13/metabolism , Lymphocyte Activation , Mice , Mice, SCID , Neoplasm Recurrence, Local , Neoplasm Transplantation , Protein Binding , Protein Multimerization , Receptors, Antigen, T-Cell/metabolism , Transgenes
16.
J Neurooncol ; 125(2): 307-15, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26341370

ABSTRACT

While the 5-year overall survival is better in pediatric than in adult patients diagnosed with glioblastoma (GBM), outcomes in children remain very poor. Understanding the mechanisms of tumorigenesis and tumor propagation can identify therapeutic targets to improve these outcomes. Human cytomegalovirus (CMV) proteins and nucleic acids are present in the majority of adult GBM. Indeed, CMV is emerging as a potential glioma-associated target for anti-CMV agents and cellular therapeutics. Furthermore, CMV appears to contribute to GBM's malignant phenotype, although its role in tumorigenesis is less certain. In this cohort of 25 serially diagnosed pediatric GBMs, the largest described cohort to date, we used immunohistochemical staining and in situ hybridization to show the presence of CMV antigens pp65 and IE1-72 as well as CMV nucleic acids, respectively. Our cohort indicated either CMV antigen pp65 or IE1-72 was present in approximately 67 % of pediatric GBM samples. The majority of samples stained positive for either CMV antigen showing a cytoplasmic pattern in 25-50 % of cells within the sample at a moderate intensity, while a few samples showed nuclear staining and higher grade/intensity. Of 16 samples where in situ hybridization was performed, 13 (81 %) showed specific staining using a CMV genome specific probe cocktail. ISH positive samples showed high concordance with being pp65 or IE1-72 positive. These findings, paired with the association of CMV expression with poor prognosis and overall survival, indicate the need to further investigate how these antigens are promoting tumor growth and preventing cell death. Also, the expression of these antigens in a majority of tumor tissues should be considered for immunotherapeutic targets in cases of pediatric GBM.


Subject(s)
Brain Neoplasms/diagnosis , Glioblastoma/diagnosis , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Adolescent , Brain Neoplasms/virology , Child , Child, Preschool , Cohort Studies , Cytomegalovirus/metabolism , Cytomegalovirus/pathogenicity , Female , Glioblastoma/virology , Humans , Infant , Male
17.
J Chem Inf Model ; 55(4): 806-13, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25741627

ABSTRACT

To test the ability of molecular simulations to accurately predict the solution-state conformational properties of peptidomimetics, we examined a test set of 18 cyclic RGD peptides selected from the literature, including the anticancer drug candidate cilengitide, whose favorable binding affinity to integrin has been ascribed to its pre-organization in solution. For each design, we performed all-atom replica-exchange molecular dynamics simulations over several microseconds and compared the results to extensive published NMR data. We find excellent agreement with experimental NOE distance restraints, suggesting that molecular simulation can be a useful tool for the computational design of pre-organized solution-state structure. Moreover, our analysis of conformational populations estimates that, despite the potential for increased flexibility due to backbone amide isomerizaton, N-methylation provides about 0.5 kcal/mol of reduced conformational entropy to cyclic RGD peptides. The combination of pre-organization and binding-site compatibility explains the strong binding affinity of cilengitide to integrin.


Subject(s)
Molecular Dynamics Simulation , Peptides, Cyclic/chemistry , Drug Design , Peptidomimetics/chemistry , Protein Conformation , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...