Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Res ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499500

ABSTRACT

Pannexin 3 (Panx3) is a glycoprotein that forms mechanosensitive channels expressed in chondrocytes and annulus fibrosus cells of the intervertebral disc (IVD). Evidence suggests Panx3 plays contrasting roles in traumatic versus aging osteoarthritis (OA) and intervertebral disc degeneration (IDD). However, whether its deletion influences the response of joint tissue to forced use is unknown. The purpose of this study was to determine if Panx3 deletion in mice causes increased knee joint OA and IDD after forced treadmill running. Male and female wildtype (WT) and Panx3 knockout (KO) mice were randomized to either a no-exercise group (sedentary; SED) or daily forced treadmill running (forced exercise; FEX) from 24 to 30 weeks of age. Knee cartilage and IVD histopathology were evaluated by histology, while tibial secondary ossification centers were analyzed using microcomputed tomography (µCT). Both male and female Panx3 KO mice developed larger superficial defects of the tibial cartilage after forced treadmill running compared with SED WT mice. Additionally, Panx3 KO mice developed reduced bone volume, and female PANX3 KO mice had lengthening of the lateral tubercle at the intercondylar eminence. In the lower lumbar spine, both male and female Panx3 KO mice developed histopathological features of IDD after running compared to SED WT mice. These findings suggest that the combination of deleting Panx3 and forced treadmill running induces OA and causes histopathological changes associated with the degeneration of the IVDs in mice.

2.
Sci Signal ; 17(821): eadg2622, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38289985

ABSTRACT

Targeted degradation regulates the activity of the transcriptional repressor Bcl6 and its ability to suppress oxidative stress and inflammation. Here, we report that abundance of endothelial Bcl6 is determined by its interaction with Golgi-localized pannexin 3 (Panx3) and that Bcl6 transcriptional activity protects against vascular oxidative stress. Consistent with data from obese, hypertensive humans, mice with an endothelial cell-specific deficiency in Panx3 had spontaneous systemic hypertension without obvious changes in channel function, as assessed by Ca2+ handling, ATP amounts, or Golgi luminal pH. Panx3 bound to Bcl6, and its absence reduced Bcl6 protein abundance, suggesting that the interaction with Panx3 stabilized Bcl6 by preventing its degradation. Panx3 deficiency was associated with increased expression of the gene encoding the H2O2-producing enzyme Nox4, which is normally repressed by Bcl6, resulting in H2O2-induced oxidative damage in the vasculature. Catalase rescued impaired vasodilation in mice lacking endothelial Panx3. Administration of a newly developed peptide to inhibit the Panx3-Bcl6 interaction recapitulated the increase in Nox4 expression and in blood pressure seen in mice with endothelial Panx3 deficiency. Panx3-Bcl6-Nox4 dysregulation occurred in obesity-related hypertension, but not when hypertension was induced in the absence of obesity. Our findings provide insight into a channel-independent role of Panx3 wherein its interaction with Bcl6 determines vascular oxidative state, particularly under the adverse conditions of obesity.


Subject(s)
Hypertension , Transcription Factors , Animals , Humans , Mice , Cell Differentiation , Cell Proliferation/physiology , Connexins/metabolism , Hydrogen Peroxide/pharmacology , Obesity , Oxidative Stress , Proto-Oncogene Proteins c-bcl-6/metabolism , Transcription Factors/metabolism
3.
J Vasc Res ; 60(2): 114-124, 2023.
Article in English | MEDLINE | ID: mdl-36366809

ABSTRACT

Pannexins (PANX1, 2, 3) are channel-forming glycoproteins that are expressed throughout the cardiovascular and musculoskeletal system. The canonical function of these proteins is to release nucleotides that act as purinergic signalling at the cell membrane or Ca2+ channels at the endoplasmic reticulum membrane. These two forms of signalling are essential for autocrine and paracrine signalling in health, and alterations in this signalling have been implicated in the pathogenesis of many diseases. Many musculoskeletal and cardiovascular diseases are largely the result of a lack of physical activity which causes altered gene expression. Considering exercise training has been shown to alter a wide array of gene expression in musculoskeletal tissues, understanding the interaction between exercise training, gene function and expression in relevant diseases is warranted. With regards to pannexins, multiple publications have shown that exercise training can influence pannexin expression and may influence the significance of its function in certain diseases. This review further discusses the potential interaction between exercise training and pannexin biology in relevant tissues and disease models. We propose that exercise training in relevant animal and human models will provide a more comprehensive understanding of the implications of pannexin biology in disease.


Subject(s)
Connexins , Glycoproteins , Animals , Humans , Connexins/genetics , Connexins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism
4.
Kidney Int ; 67(5): 1868-77, 2005 May.
Article in English | MEDLINE | ID: mdl-15840034

ABSTRACT

BACKGROUND: We have reported that digitalis-like substances (cardiotonic steroids), including marinobufagenin (MBG), induce endocytosis of the plasmalemmal Na/K-ATPase in LLC-PK1 cells. The current report addresses the potential relevance of plasmalemmal Na/K-ATPase redistribution to in vivo salt handling. METHODS: Male Sprague-Dawley rats were given 1 week of a high salt (4.0% NaCl) or normal salt (0.4% NaCl) diet. Urinary sodium excretion, as well as MBG excretion, was monitored, and proximal tubules were isolated using a Percoll gradient method. Tubular (86)Rb uptake, Na/K-ATPase enzymatic activity, and Na/K-ATPase alpha1 subunit density were determined. RESULTS: The high salt diet increased urinary sodium (17.8 +/- 1.8 vs. 2.5 +/- 0.3 mEq/day, P < 0.01) and MBG excretion (104 +/- 12 vs. 26 +/- 4 pmol/day), and decreased proximal tubular (86)Rb uptake (0.44 +/- 0.07 vs. 1.00 +/- 0.10, P < 0.01) and Na/K-ATPase enzymatic activity (5.1 +/- 1.1 vs. 9.9 +/- 1.6 micromol/mg pr/hr, P < 0.01) relative to the normal diet. Proximal tubular Na/K-ATPase alpha1 protein density was decreased in the plasmalemma fraction but increased in both early and late endosomes following the high salt diet. In rats fed a high salt diet, anti-MBG antibody caused a 60% reduction in urinary sodium excretion, substantial increases in proximal tubule (86)Rb uptake, and Na/K-ATPase enzymatic activity, as well as significant decreases in the early and late endosomal Na/K-ATPase alpha1 protein content. CONCLUSION: These data suggest that redistribution of the proximal tubule Na/K-ATPase in response to endogenous cardiotonic steroids plays an important role in renal adaptation to salt loading.


Subject(s)
Kidney Tubules, Proximal/metabolism , Sodium, Dietary/administration & dosage , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Antibodies/administration & dosage , Bufanolides/antagonists & inhibitors , Bufanolides/immunology , Bufanolides/urine , Cell Membrane/metabolism , Endosomes/metabolism , In Vitro Techniques , Male , Natriuresis , Rats , Rats, Sprague-Dawley , Sodium/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...