Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Oncoimmunology ; 13(1): 2351255, 2024.
Article in English | MEDLINE | ID: mdl-38737792

ABSTRACT

Immune checkpoint inhibitors (ICI) are increasingly used in combination. To understand the effects of different ICI categories, we characterized changes in circulating autoantibodies in patients enrolled in the E4412 trial (NCT01896999) of brentuximab vedotin (BV) plus ipilimumab, BV plus nivolumab, or BV plus ipilimumab-nivolumab for Hodgkin Lymphoma. Cycle 2 Day 1 (C2D1) autoantibody levels were compared to pre-treatment baseline. Across 112 autoantibodies tested, we generally observed increases in ipilimumab-containing regimens, with decreases noted in the nivolumab arm. Among 15 autoantibodies with significant changes at C2D1, all nivolumab cases exhibited decreases, with more than 90% of ipilimumab-exposed cases showing increases. Autoantibody profiles also showed differences according to immune-related adverse event (irAE) type, with rash generally featuring increases and liver toxicity demonstrating decreases. We conclude that dynamic autoantibody profiles may differ according to ICI category and irAE type. These findings may have relevance to clinical monitoring and irAE treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Autoantibodies , Brentuximab Vedotin , Immune Checkpoint Inhibitors , Ipilimumab , Nivolumab , Humans , Autoantibodies/blood , Autoantibodies/immunology , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/administration & dosage , Nivolumab/adverse effects , Nivolumab/administration & dosage , Ipilimumab/adverse effects , Ipilimumab/administration & dosage , Brentuximab Vedotin/therapeutic use , Female , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Hodgkin Disease/drug therapy , Hodgkin Disease/immunology , Male , Middle Aged , Adult , Aged
2.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37580069

ABSTRACT

BACKGROUND: Immune checkpoint inhibitor (ICI) therapies may cause unpredictable and potentially severe autoimmune toxicities termed immune-related adverse events (irAEs). Because T cells mediate ICI effects, T cell profiling may provide insight into the risk of irAEs. Here we evaluate a novel metric-the T-cell tolerant fraction-as a predictor of future irAEs. METHODS: We examined T-cell receptor beta (TRB) locus sequencing from baseline pretreatment samples from an institutional registry and previously published studies. For each patient, we used TRB sequences to calculate the T-cell tolerant fraction, which was then assessed as a predictor of future irAEs (classified as Common Terminology Criteria for Adverse Event grade 0-1 vs grade ≥2). We then compared the tolerant fraction to TRB clonality and diversity. Finally, the tolerant fraction was assessed on (1) T cells enriched against napsin A, a potential autoantigen of irAEs; (2) thymic versus peripheral blood T cells; and (3) TRBs specific for various infections and autoimmune diseases. RESULTS: A total of 77 patients with cancer (22 from an institutional registry and 55 from published studies) receiving ICI therapy (43 CTLA4, 19 PD1/PDL1, 15 combination CTLA4+PD1/PDL1) were included in the study. The tolerant fraction was significantly lower in cases with clinically significant irAEs (p<0.001) and had an area under the receiver operating curve (AUC) of 0.79. The tolerant fraction was lower for each ICI treatment category, reaching statistical significance for CTLA4 (p<0.001) and demonstrating non-significant trends for PD1/PDL1 (p=0.21) and combination ICI (p=0.18). The tolerant fraction for T cells enriched against napsin A was lower than other samples. The tolerant fraction was also lower in thymic versus peripheral blood samples, and lower in some (multiple sclerosis) but not other (type 1 diabetes) autoimmune diseases. In our study cohort, TRB clonality had an AUC of 0.62, and TRB diversity had an AUC of 0.60 for predicting irAEs. CONCLUSIONS: Among patients receiving ICI, the baseline T-cell tolerant fraction may serve as a predictor of clinically significant irAEs.


Subject(s)
Autoimmune Diseases , Immune System Diseases , Neoplasms , Humans , CTLA-4 Antigen , T-Lymphocytes
3.
Transl Oncol ; 34: 101689, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37285748

ABSTRACT

INTRODUCTION: Preclinical studies have demonstrated the ability of radiation therapy (RT) to augment immune response and tumor control by immune checkpoint inhibitors (ICI). However, numerous clinical trials combining RT and ICI have yielded relatively disappointing results. To improve understanding of optimal use of these therapies, we assessed systemic immune effects of prior RT in patients receiving ICI. METHODS AND MATERIALS: Pre- and post-ICI blood samples were collected from patients enrolled in a prospective immunotherapy biospecimen protocol. Mutiplex panels of 40 cytokines and 120 autoantibodies (Ab) were analyzed. We identified differences in these parameters according to receipt, timing, and type of prior RT. We calculated P values using the Pearson product-moment correlation coefficient and false discovery rate (FDR) using the Benjamini-Hochberg Procedure. RESULTS: Among 277 total patients, 69 (25%) received RT in the 6 months prior to ICI initiation. Among RT-treated patients, 23 (33%) received stereotactic RT, and 33 (48%) received curative intent RT. There was no significant difference in demographics or type of immunotherapy between patients according to prior RT exposure. Baseline complement C8 Ab and MIP-1d/CCL15 were significantly higher among patients with prior RT. For MIP-1d/CCL15, only prior stereotactic RT was associated with significant differences. CONCLUSIONS: Prior RT is associated with few changes in systemic immune parameters in patients receiving ICI. The underlying mechanisms and optimal approach to harnessing the potential synergy of RT and ICI require further prospective clinical investigation.

4.
Ann Rheum Dis ; 81(12): 1712-1721, 2022 12.
Article in English | MEDLINE | ID: mdl-35977808

ABSTRACT

OBJECTIVES: Families that contain multiple siblings affected with childhood onset of systemic lupus erythematosus (SLE) likely have strong genetic predispositions. We performed whole exome sequencing (WES) to identify familial rare risk variants and to assess their effects in lupus. METHODS: Sanger sequencing validated the two ultra-rare, predicted pathogenic risk variants discovered by WES and identified additional variants in 562 additional patients with SLE. Effects of a splice site variant and a frameshift variant were assessed using a Minigene assay and CRISPR/Cas9-mediated knock-in (KI) mice, respectively. RESULTS: The two familial ultra-rare, predicted loss-of-function (LOF) SAT1 variants exhibited X-linked recessive Mendelian inheritance in two unrelated African-American families. Each LOF variant was transmitted from the heterozygous unaffected mother to her two sons with childhood-onset SLE. The p.Asp40Tyr variant affected a splice donor site causing deleterious transcripts. The young hemizygous male and homozygous female Sat1 p.Glu92Leufs*6 KI mice spontaneously developed splenomegaly, enlarged glomeruli with leucocyte infiltration, proteinuria and elevated expression of type I interferon-inducible genes. SAT1 is highly expressed in neutrophils and encodes spermidine/spermine-N1-acetyltransferase 1 (SSAT1), a rate-limiting enzyme in polyamine catabolism. Young male KI mice exhibited neutrophil defects and decreased proportions of Foxp3 +CD4+ T-cell subsets. Circulating neutrophil counts and proportions of Foxp3 +CD4+ T cells correlated with decreased plasma levels of spermine in treatment-naive, incipient SLE patients. CONCLUSIONS: We identified two novel SAT1 LOF variants, showed the ability of the frameshift variant to confer murine lupus, highlighted the pathogenic role of dysregulated polyamine catabolism and identified SAT1 LOF variants as new monogenic causes for SLE.


Subject(s)
Genetic Diseases, X-Linked , Lupus Erythematosus, Systemic , Animals , Child , Female , Humans , Male , Mice , Genetic Predisposition to Disease , Homozygote , Lupus Erythematosus, Systemic/genetics , Spermine/blood , Genetic Diseases, X-Linked/genetics , Acetyltransferases/genetics
5.
Cancers (Basel) ; 14(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35267634

ABSTRACT

Antibiotic administration is associated with worse clinical outcomes and changes to the gut microbiome in cancer patients receiving immune checkpoint inhibitors (ICI). However, the effects of antibiotics on systemic immune function are unknown. We, therefore, evaluated antibiotic exposure, therapeutic responses, and multiplex panels of 40 serum cytokines and 124 antibodies at baseline and six weeks after ICI initiation, with p < 0.05 and false discovery rate (FDR) < 0.2 considered significant. A total of 251 patients were included, of whom the 135 (54%) who received antibiotics had lower response rates and shorter survival. Patients who received antibiotics prior to ICI initiation had modestly but significantly lower baseline levels of nucleolin, MDA5, c-reactive protein, and liver cytosol antigen type 1 (LC1) antibodies, as well as higher levels of heparin sulfate and Matrigel antibodies. After ICI initiation, antibiotic-treated patients had significantly lower levels of MDA5, CENP.B, and nucleolin antibodies. Although there were no clear differences in cytokines in the overall cohort, in the lung cancer subset (53% of the study population), we observed differences in IFN-γ, IL-8, and macrophage inflammatory proteins. In ICI-treated patients, antibiotic exposure is associated with changes in certain antibodies and cytokines. Understanding the relationship between these factors may improve the clinical management of patients receiving ICI.

6.
J Immunother Cancer ; 9(12)2021 12.
Article in English | MEDLINE | ID: mdl-34880115

ABSTRACT

Immune-related adverse events (irAE) may affect almost any organ system and occur at any point during treatment with immune checkpoint inhibitors (ICI). We present a patient with advanced lung cancer receiving antiprogrammed death 1 checkpoint inhibitor who developed a delayed-onset visual irAE treated with corticosteroids. Through assessment of longitudinal biospecimens, we analyzed serial autoantibodies, cytokines, and cellular populations. Months after ICI initiation and preceding clinical toxicity, the patient developed broad increases in cytokines (most notably interleukin-6 (IL-6), interferon-γ (IFNγ), C-X-C motif chemokine ligand 2 (CXCL2), and C-C motif chemokine ligand 17 (CCL17)), autoantibodies (including anti-angiotensin receptor, α-actin, and amyloid), CD8 T cells, and plasmablasts. Such changes were not observed in healthy controls and ICI-treated patients without irAE. Administration of corticosteroids resulted in immediate and profound decreases in cytokines, autoantibodies, and inflammatory cells. This case highlights the potential for late-onset changes in humoral and cellular immunity in patients receiving ICI. It also demonstrates the biologic effects of corticosteroids on these parameters. Application of humoral and cellular immune biomarkers across ICI populations may inform toxicity monitoring and management.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Brain Neoplasms/drug therapy , Carcinoma, Squamous Cell/drug therapy , Drug-Related Side Effects and Adverse Reactions/pathology , Lung Neoplasms/drug therapy , Brain Neoplasms/secondary , Carcinoma, Squamous Cell/pathology , Drug-Related Side Effects and Adverse Reactions/etiology , Female , Humans , Lung Neoplasms/pathology , Middle Aged
7.
Clin Cancer Res ; 27(24): 6716-6725, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34551906

ABSTRACT

PURPOSE: This phase II clinical trial evaluated whether the addition of stereotactic ablative radiotherapy (SAbR), which may promote tumor antigen presentation, improves the overall response rate (ORR) to high-dose IL2 (HD IL2) in metastatic renal cell carcinoma (mRCC). PATIENTS AND METHODS: Patients with pathologic evidence of clear cell renal cell carcinoma (RCC) and radiographic evidence of metastasis were enrolled in this single-arm trial and were treated with SAbR, followed by HD IL2. ORR was assessed based on nonirradiated metastases. Secondary endpoints included overall survival (OS), progression-free survival (PFS), toxicity, and treatment-related tumor-specific immune response. Correlative studies involved whole-exome and transcriptome sequencing, T-cell receptor sequencing, cytokine analysis, and mass cytometry on patient samples. RESULTS: Thirty ethnically diverse mRCC patients were enrolled. A median of two metastases were treated with SAbR. Among 25 patients evaluable by RECIST v1.1, ORR was 16% with 8% complete responses. Median OS was 37 months. Treatment-related adverse events (AE) included 22 grade ≥3 events that were not dissimilar from HD IL2 alone. There were no grade 5 AEs. A correlation was observed between SAbR to lung metastases and improved PFS (P = 0.0165). Clinical benefit correlated with frameshift mutational load, mast cell tumor infiltration, decreased circulating tumor-associated T-cell clones, and T-cell clonal expansion. Higher regulatory/CD8+ T-cell ratios at baseline in the tumor and periphery correlated with no clinical benefit. CONCLUSIONS: Adding SAbR did not improve the response rate to HD IL2 in patients with mRCC in this study. Tissue analyses suggest a possible correlation between frameshift mutation load as well as tumor immune infiltrates and clinical outcomes.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Lung Neoplasms , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/radiotherapy , Combined Modality Therapy/adverse effects , Humans , Interleukin-2/adverse effects , Interleukin-2/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/therapy , Lung Neoplasms/drug therapy , Radiosurgery , Treatment Outcome
8.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34127546

ABSTRACT

BACKGROUND: Increased body mass index (BMI) has been associated with improved response to immune checkpoint inhibitors (ICIs) in multiple cancer types. We evaluated associations between BMI, ICI dosing strategy, and clinical outcomes. METHODS: We abstracted clinical data on patients with cancer treated with ICI, including age, sex, cancer type, BMI, ICI type, dosing strategy (weight-based or fixed), radiographic response, overall survival (OS), and progression-free survival (PFS). We compared clinical outcomes between low-BMI and high-BMI populations using Kaplan-Meier curves, Cox regressions, and Pearson product-moment correlation coefficients. RESULTS: A total of 297 patients were enrolled, of whom 40% were women and 59% were overweight (BMI≥25). Of these, 204 (69%) received fixed and 93 (31%) received weight-based ICI dosing. In the overall cohort, overweight BMI was associated with improved PFS (HR 0.69; 95% CI 0.51 to 0.94; p=0.02) and had a trend toward improved OS (HR 0.77; 95% CI 0.57 to 1.04; p=0.08). For both endpoints, improved outcomes in the overweight population were limited to patients who received weight-based ICI dosing (PFS HR 0.53; p=0.04 for weight-based; vs HR 0.79; p=0.2 for fixed dosing) (OS HR 0.56; p=0.03 for weight-based; vs HR 0.89; p=0.54 for fixed dosing). In multivariable analysis, BMI was not associated with PFS or OS. However, the interaction of BMI≥25 and weight-based dosing had a trend toward association with PFS (HR 0.53; 95% CI 0.26 to 1.10; p=0.09) and was associated with OS (HR 0.50; 95% CI 0.25 to 0.99; p=0.05). Patients with BMI<25 tended to have better outcomes with fixed-dose compared with weight-based ICI, while patients with BMI≥25 tended to have better outcomes with weight-based ICI, although these differences did not achieve statistical significance. There was no association between radiographic response and BMI with fixed-dose ICI (p=0.97), but a near-significant trend with weight-based ICI (p=0.1). In subset analyses, the association between BMI, ICI dosing strategy, and clinical outcomes appeared limited to men. CONCLUSIONS: The clinical benefit of ICI in high-BMI populations appears limited to individuals receiving weight-based ICI dosing. Further research into optimal ICI dosing strategies may be warranted.


Subject(s)
Biomarkers, Pharmacological/metabolism , Body Mass Index , Immune Checkpoint Inhibitors/therapeutic use , Adult , Aged , Aged, 80 and over , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Male , Middle Aged , Prospective Studies
9.
Cell Rep ; 34(12): 108891, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33761354

ABSTRACT

Myeloid lineage cells use TLRs to recognize and respond to diverse microbial ligands. Although unique transcription factors dictate the outcome of specific TLR signaling, whether lineage-specific differences exist to further modulate the quality of TLR-induced inflammation remains unclear. Comprehensive analysis of global gene transcription in human monocytes, monocyte-derived macrophages, and monocyte-derived dendritic cells stimulated with various TLR ligands identifies multiple lineage-specific, TLR-responsive gene programs. Monocytes are hyperresponsive to TLR7/8 stimulation that correlates with the higher expression of the receptors. While macrophages and monocytes express similar levels of TLR4, macrophages, but not monocytes, upregulate interferon-stimulated genes (ISGs) in response to TLR4 stimulation. We find that TLR4 signaling in macrophages uniquely engages transcription factor IRF1, which facilitates the opening of ISG loci for transcription. This study provides a critical mechanistic basis for lineage-specific TLR responses and uncovers IRF1 as a master regulator for the ISG transcriptional program in human macrophages.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation , Interferon Regulatory Factor-1/metabolism , Interferons/pharmacology , Macrophages/metabolism , Monocytes/metabolism , Base Sequence , Cell Lineage/genetics , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chemokines/genetics , Chemokines/metabolism , Dendritic Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Immunity , Interferon Regulatory Factor-1/deficiency , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Monocytes/drug effects , Myeloid Cells/cytology , Nucleotide Motifs , Protein Binding/drug effects , Protein Transport/drug effects , Signal Transduction , THP-1 Cells , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism
10.
J Clin Immunol ; 41(5): 1031-1047, 2021 07.
Article in English | MEDLINE | ID: mdl-33656624

ABSTRACT

PURPOSE: The human antibody repertoire forms in response to infections, the microbiome, vaccinations, and environmental exposures. The specificity of such antibody responses was compared among a cohort of toddlers to identify differences between seropositive versus seronegative responses. METHODS: An assessment of the serum IgM and IgG antibody reactivities in 197 toddlers of 1- and 2-years of age was performed with a microfluidic array containing 110 distinct antigens. Longitudinal profiling was done from years 1 to 2. Seropositivity to RNA and DNA viruses; bacteria; live attenuated, inactive, and subunit vaccines; and autoantigens was compared. A stratification was developed based on quantitative variations in the IgG responses. Clinical presentations and previously known genetic risk alleles for various immune system conditions were investigated in relation to IgG responses. RESULTS: IgG reactivities stratified toddlers into low, moderate, and high responder groups. The high group (17%) had elevated IgG responses to multiple RNA and DNA viruses (e.g., respiratory syncytial virus, Epstein-Barr virus, adenovirus, Coxsackievirus) and this correlated with increased responses to live attenuated viral vaccines and certain autoantigens. This high group was more likely to be associated with gestational diabetes and an older age. Genetic analyses identified polymorphisms in the IL2RB, TNFSF4, and INS genes in two high responder individuals that were associated with their elevated cytokine levels and clinical history of eczema and asthma. CONCLUSION: Serum IgG profiling of toddlers reveals correlations between the magnitude of the antibody responses towards viruses, live attenuated vaccines, and certain autoantigens. A low responder group had much weaker responses overall, including against vaccines. The serum antibody screen also identifies individuals with IgG responses to less common infections (West Nile virus, parvovirus, tuberculosis). The characterization of the antibody responses in combination with the identification of genetic risk alleles provides an opportunity to identify children with increased risk of clinical disease.


Subject(s)
Antibodies, Viral/blood , Autoantigens/immunology , Bacteria/immunology , DNA Viruses/immunology , Immunoglobulin G/blood , RNA Viruses/immunology , Vaccines/immunology , Child, Preschool , Cytokines/blood , Female , Genotype , Humans , Immunoglobulin M/blood , Infant , Male , Microfluidic Analytical Techniques
11.
Genome Biol ; 21(1): 281, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33213505

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is a clinically heterogeneous autoimmune disease characterized by the development of anti-nuclear antibodies. Susceptibility to SLE is multifactorial, with a combination of genetic and environmental risk factors contributing to disease development. Like other polygenic diseases, a significant proportion of estimated SLE heritability is not accounted for by common disease alleles analyzed by SNP array-based GWASs. Death-associated protein 1 (DAP1) was implicated as a candidate gene in a previous familial linkage study of SLE and rheumatoid arthritis, but the association has not been explored further. RESULTS: We perform deep sequencing across the DAP1 genomic segment in 2032 SLE patients, and healthy controls, and discover a low-frequency functional haplotype strongly associated with SLE risk in multiple ethnicities. We find multiple cis-eQTLs embedded in a risk haplotype that progressively downregulates DAP1 transcription in immune cells. Decreased DAP1 transcription results in reduced DAP1 protein in peripheral blood mononuclear cells, monocytes, and lymphoblastoid cell lines, leading to enhanced autophagic flux in immune cells expressing the DAP1 risk haplotype. Patients with DAP1 risk allele exhibit significantly higher autoantibody titers and altered expression of the immune system, autophagy, and apoptosis pathway transcripts, indicating that the DAP1 risk allele mediates enhanced autophagy, leading to the survival of autoreactive lymphocytes and increased autoantibody. CONCLUSIONS: We demonstrate how targeted sequencing captures low-frequency functional risk alleles that are missed by SNP array-based studies. SLE patients with the DAP1 genotype have distinct autoantibody and transcription profiles, supporting the dissection of SLE heterogeneity by genetic analysis.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Autoimmunity/genetics , Haplotypes , High-Throughput Nucleotide Sequencing , Lupus Erythematosus, Systemic/genetics , Alleles , Arthritis, Rheumatoid , Autophagy , Dendritic Cells , Down-Regulation , Gene Expression , Gene Expression Profiling , Gene Frequency , Genetic Predisposition to Disease/genetics , Genotype , Humans , Leukocytes, Mononuclear , Polymorphism, Single Nucleotide , Sequence Alignment
12.
Front Microbiol ; 11: 1631, 2020.
Article in English | MEDLINE | ID: mdl-32849337

ABSTRACT

Nearly one third of the world's population is infected with Mycobacterium tuberculosis (Mtb). While much work has focused on the role of different Mtb encoded proteins in pathogenesis, recent studies have revealed that Mtb also transcribes many noncoding RNAs whose functions remain poorly characterized. We performed RNA sequencing and identified a subset of Mtb H37Rv-encoded small RNAs (<30 nts in length) that were produced in infected macrophages. Designated as smaller noncoding RNAs (sncRNAs), three of these predominated the read counts. Each of the three, sncRNA-1, sncRNA-6, and sncRNA-8 had surrounding sequences with predicted stable secondary RNA stem loops. Site-directed mutagenesis of the precursor sequences suggest the existence of a hairpin loop dependent RNA processing mechanism. A functional assessment of sncRNA-1 suggested that it positively regulated two mycobacterial transcripts involved in oleic acid biosynthesis. Complementary loss- and gain- of-function approaches revealed that sncRNA-1 positively supports Mtb growth and survival in nutrient-depleted cultures as well as in infected macrophages. Overall, the findings reveal that Mtb produces sncRNAs in infected cells, with sncRNA-1 modulating mycobacterial gene expression including genes coupled to oleic acid biogenesis.

13.
Oncologist ; 25(8): e1242-e1245, 2020 08.
Article in English | MEDLINE | ID: mdl-32400023

ABSTRACT

Immune-related adverse events induced by immune checkpoint inhibitor (ICI) therapy may affect diverse organ systems, including skeletal and cardiac muscle. ICI-associated myositis may result in substantial morbidity and occasional mortality. We present a case of a patient with advanced non-small cell lung cancer who developed grade 4 myositis with concurrent myocarditis early after initiation of anti-programmed death ligand 1 therapy (durvalumab). Autoantibody analysis revealed marked increases in anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibody levels that preceded clinical toxicity, and further increased during toxicity. Notably, the patient had a history of intolerable statin myopathy, which had resolved clinically after statin discontinuation and prior to ICI initiation. This case demonstrates a potential association between statin exposure, autoantibodies, and ICI-associated myositis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Lung Neoplasms , Myositis , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Immune Checkpoint Inhibitors , Myositis/chemically induced , Myositis/drug therapy
14.
Oncologist ; 25(5): e753-e757, 2020 05.
Article in English | MEDLINE | ID: mdl-32167195

ABSTRACT

Immune checkpoint inhibitor (ICI)-induced immune-related adverse events (irAEs) may affect almost any organ system and occur at any point during therapy. Autoantibody analysis may provide insight into the mechanism, nature, and timing of these events. We report a case of ICI-induced late-onset Raynaud's-like phenomenon in a patient receiving combination immunotherapy. A 53-year-old woman with advanced non-small lung cancer received combination anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed death 1 ICI therapy. She developed early (hypophysitis at 4 months) and late (Raynaud's at >20 months) irAEs. Longitudinal assessment of 124 autoantibodies was correlated with toxicity. Although autoantibody levels were generally stable for the first 18 months of therapy, shortly before the development of Raynaud's, a marked increase in multiple autoantibodies was observed. This case highlights the potential for delayed autoimmune toxicities and provides potential biologic insights into the dynamic nature of these events. KEY POINTS: A patient treated with dual anti-PD1 and anti-CTLA4 therapy developed Raynaud's-like signs and symptoms more than 18 months after starting therapy. In this case, autoantibody changes became apparent shortly before onset of clinical toxicity. This case highlights the potential for late-onset immune-related adverse events checkpoint inhibitors, requiring continuous clinical vigilance. The optimal duration of checkpoint inhibitor therapy in patients with profound and prolonged responses remains unclear.


Subject(s)
Immunotherapy , Lung Neoplasms , Autoantibodies , Female , Humans , Immunologic Factors , Immunotherapy/adverse effects , Middle Aged
15.
J Exp Med ; 217(4)2020 04 06.
Article in English | MEDLINE | ID: mdl-31967646

ABSTRACT

Dendritic cells (DCs) are critical for the differentiation of pathogen-specific CD4 T cells. However, to what extent innate cues from DCs dictate transcriptional changes in T cells remains elusive. Here, we used DCs stimulated with specific pathogens to prime CD4 T cells in vitro and found that these T cells express unique transcriptional profiles dictated by the nature of the priming pathogen. More specifically, the transcriptome of in vitro C. rodentium-primed Th17 cells resembled that of Th17 cells primed following infection in vivo but was remarkably distinct from cytokine-polarized Th17 cells. We identified caspase-1 as a unique gene up-regulated only in pathogen-primed Th17 cells and discovered a critical role for T cell-intrinsic caspase-1, independent of inflammasome, in optimal priming of Th17 responses. T cells lacking caspase-1 failed to induce colitis or confer protection against C. rodentium infection due to suboptimal Th17 cell differentiation in vivo. This study underlines the importance of DC-mediated priming in identifying novel regulators of T cell differentiation.


Subject(s)
Caspase 1/genetics , Cell Differentiation/genetics , Th17 Cells/metabolism , Th17 Cells/microbiology , Transcription, Genetic/genetics , Animals , Cell Line, Tumor , Cell Polarity , Citrobacter rodentium , Colitis/genetics , Colitis/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Enterobacteriaceae Infections/metabolism , Enterobacteriaceae Infections/microbiology , Female , Gene Knockout Techniques , Inflammasomes/metabolism , Lymphocyte Activation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcriptome
16.
PLoS Genet ; 15(4): e1008092, 2019 04.
Article in English | MEDLINE | ID: mdl-31022184

ABSTRACT

Human leukocyte antigen (HLA) is a key genetic factor conferring risk of systemic lupus erythematosus (SLE), but precise independent localization of HLA effects is extremely challenging. As a result, the contribution of specific HLA alleles and amino-acid residues to the overall risk of SLE and to risk of specific autoantibodies are far from completely understood. Here, we dissected (a) overall SLE association signals across HLA, (b) HLA-peptide interaction, and (c) residue-autoantibody association. Classical alleles, SNPs, and amino-acid residues of eight HLA genes were imputed across 4,915 SLE cases and 13,513 controls from Eastern Asia. We performed association followed by conditional analysis across HLA, assessing both overall SLE risk and risk of autoantibody production. DR15 alleles HLA-DRB1*15:01 (P = 1.4x10-27, odds ratio (OR) = 1.57) and HLA-DQB1*06:02 (P = 7.4x10-23, OR = 1.55) formed the most significant haplotype (OR = 2.33). Conditioned protein-residue signals were stronger than allele signals and mapped predominantly to HLA-DRB1 residue 13 (P = 2.2x10-75) and its proxy position 11 (P = 1.1x10-67), followed by HLA-DRB1-37 (P = 4.5x10-24). After conditioning on HLA-DRB1, novel associations at HLA-A-70 (P = 1.4x10-8), HLA-DPB1-35 (P = 9.0x10-16), HLA-DQB1-37 (P = 2.7x10-14), and HLA-B-9 (P = 6.5x10-15) emerged. Together, these seven residues increased the proportion of explained heritability due to HLA to 2.6%. Risk residues for both overall disease and hallmark autoantibodies (i.e., nRNP: DRB1-11, P = 2.0x10-14; DRB1-13, P = 2.9x10-13; DRB1-30, P = 3.9x10-14) localized to the peptide-binding groove of HLA-DRB1. Enrichment for specific amino-acid characteristics in the peptide-binding groove correlated with overall SLE risk and with autoantibody presence. Risk residues were in primarily negatively charged side-chains, in contrast with rheumatoid arthritis. We identified novel SLE signals in HLA Class I loci (HLA-A, HLA-B), and localized primary Class II signals to five residues in HLA-DRB1, HLA-DPB1, and HLA-DQB1. These findings provide insights about the mechanisms by which the risk residues interact with each other to produce autoantibodies and are involved in SLE pathophysiology.


Subject(s)
Amino Acid Sequence , Autoantibodies/immunology , Disease Susceptibility , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Lupus Erythematosus, Systemic/etiology , Alleles , Amino Acid Substitution , Asian People , Female , Genetic Predisposition to Disease , Genetic Variation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II/genetics , Humans , Male , Odds Ratio , Polymorphism, Single Nucleotide
17.
Nat Commun ; 9(1): 3185, 2018 08 09.
Article in English | MEDLINE | ID: mdl-30093707

ABSTRACT

Innate cytokines are critical drivers of priming and differentiation of naive CD4 T cells, but their functions in memory T cell response are largely undefined. Here we show that IL-1 acts as a licensing signal to permit effector cytokine production by pre-committed Th1 (IFN-γ), Th2 (IL-13, IL-4, and IL-5) and Th17 (IL-17A, IL-17F, and IL-22) lineage cells. This licensing function of IL-1 is conserved across effector CD4 T cells generated by diverse immunological insults. IL-1R signaling stabilizes cytokine transcripts to enable productive and rapid effector functions. We also demonstrate that successful lineage commitment does not translate into productive effector functions in the absence of IL-1R signaling. Acute abrogation of IL-1R signaling in vivo results in reduced IL-17A production by intestinal Th17 cells. These results extend the role of innate cytokines beyond CD4 T cell priming and establish IL-1 as a licensing signal for memory CD4 T cell function.


Subject(s)
CD4-Positive T-Lymphocytes/cytology , Cytokines/metabolism , Immunologic Memory , Receptors, Interleukin-1 Type I/metabolism , Animals , Cell Lineage , Cell Proliferation , Dendritic Cells/metabolism , Humans , Hyaluronan Receptors/metabolism , Interleukin-17/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , L-Selectin/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Differentiation Factor 88/metabolism , RNA, Messenger/metabolism , Receptors, Interleukin-1 Type I/genetics , Signal Transduction , Spleen/metabolism
18.
Mol Neuropsychiatry ; 4(1): 7-19, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29998114

ABSTRACT

Genome-wide association studies (GWAS) were conducted in participants of the CO-MED (Combining Medications to Enhance Depression Outcomes) trial, a randomized, 3-treatment arm clinical trial of major depressive disorder (MDD) designed to identify markers of differential treatment outcome (response and remission). The QIDS-SR (Quick Inventory of Depressive Symptomatology, Self-Reported version) was used to measure response at week 6 (QIDS-SR ≤5) and remission at week 12 (QIDS-SR ≤6 and ≤8 at the last two study visits). Three treatment groups (escitalopram monotherapy, escitalopram + bupropion, and venlafaxine + mirtazapine) were evaluated. GWAS identified a potentially regulatory SNP rs10769025 in the ALX4 gene on chromosome 11 with a strong association (p value = 9.85925E-08) with response to escitalopram monotherapy in Caucasians. Further, haplotype analysis on 7 ALX4 variants showed that a regulatory haplotype CAAACTG was significantly associated (odds ratio = 3.4, p = 2.00E-04) with response to escitalopram monotherapy at week 6. Ingenuity pathway analyses in the present study suggest that ALX4 has an indirect connection with antidepressant gene pathways in MDD, which may account for the genetic association with treatment outcome. Functional genomics studies to investigate the role of ALX4 in antidepressant treatment outcome will be an interesting future direction.

19.
Heliyon ; 4(6): e00674, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30003165

ABSTRACT

BACKGROUND: Children with acute hematogenous osteomyelitis (AHO) have a broad spectrum of illness ranging from mild to severe. The purpose of this study is to evaluate the impact of genomic variation of Staphylococcus aureus on clinical phenotype of affected children and determine which virulence genes correlate with severity of illness. METHODS: De novo whole genome sequencing was conducted for a strain of Community Acquired Methicillin Resistant Staphylococcus aureus (CA-MRSA), using PacBio Hierarchical Genome Assembly Process (HGAP) from 6 Single Molecule Real Time (SMRT) Cells, as a reference for DNA library assembly of 71 Staphylococcus aureus isolates from children with AHO. Virulence gene annotation was based on exhaustive literature review and genomic data in NCBI for Staphylococcus aureus. Clinical phenotype was assessed using a validated severity score. Kruskal-Wallis rank sum test determined association between clinical severity and virulence gene presence using False Discovery Rate (FDR), significance <0.01. RESULTS: PacBio produced an assembled genome of 2,898,306 bp and 2054 Open Reading Frames (ORFs). Annotation confirmed 201 virulence genes. Statistical analysis of gene presence by clinical severity found 40 genes significantly associated with severity of illness (FDR ≤0.009). MRSA isolates encoded a significantly greater number of virulence genes than did MSSA (p < 0.0001). Phylogenetic analysis by maximum likelihood (PAML) demonstrated the relatedness of genomic distance to clinical phenotype. CONCLUSIONS: The Staphylococcus aureus genome contains virulence genes which are significantly associated with severity of illness in children with osteomyelitis. This study introduces a novel reference strain and detailed annotation of Staphylococcus aureus virulence genes. While this study does not address bacterial gene expression, a platform is created for future transcriptome investigations to elucidate the complex mechanisms involved in childhood osteomyelitis.

20.
Arthritis Rheumatol ; 70(10): 1597-1609, 2018 10.
Article in English | MEDLINE | ID: mdl-29687651

ABSTRACT

OBJECTIVE: Toll-like receptors (TLRs) 7 and 9 are important innate signaling molecules with opposing roles in the development and progression of systemic lupus erythematosus (SLE). While multiple studies support the notion of a dependency on TLR-7 for disease development, genetic ablation of TLR-9 results in severe disease with glomerulonephritis (GN) by a largely unknown mechanism. This study was undertaken to examine the suppressive role of TLR-9 in the development of severe lupus in a mouse model. METHODS: We crossed Sle1 lupus-prone mice with TLR-9-deficient mice to generate Sle1TLR-9-/- mice. Mice ages 4.5-6.5 months were evaluated for severe autoimmunity by assessing splenomegaly, GN, immune cell populations, autoantibody and total Ig profiles, kidney dendritic cell (DC) function, and TLR-7 protein expression. Mice ages 8-10 weeks were used for functional B cell studies, Ig profiling, and determination of TLR-7 expression. RESULTS: Sle1TLR-9-/- mice developed severe disease similar to TLR-9-deficient MRL and Nba2 models. Sle1TLR-9-/- mouse B cells produced more class-switched antibodies, and the autoantibody repertoire was skewed toward RNA-containing antigens. GN in these mice was associated with DC infiltration, and purified Sle1TLR-9-/- mouse renal DCs were more efficient at TLR-7-dependent antigen presentation and expressed higher levels of TLR-7 protein. Importantly, this increase in TLR-7 expression occurred prior to disease development, indicating a role in the initiation stages of tissue destruction. CONCLUSION: The increase in TLR-7-reactive immune complexes, and the concomitant enhanced expression of their receptor, promotes inflammation and disease in Sle1TLR9-/- mice.


Subject(s)
Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 9/deficiency , Up-Regulation/immunology , Animals , Antigens/immunology , Disease Models, Animal , Mice , RNA/immunology , Toll-Like Receptor 9/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...