Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 129: 110774, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34627073

ABSTRACT

Chondrocytes as mechano-sensitive cells can sense and respond to mechanical stress throughout life. In chondrocytes, changes of structure and morphology in the cytoskeleton have been potentially involved in various mechano-transductions such as stretch-activated ion channels, integrins, and intracellular organelles. However, the mechanism of cytoskeleton rearrangement in response to mechanical loading and unloading remains unclear. In this study, we exposed chondrocytes to a physiological range of cyclic tensile strain as mechanical loading or to simulated microgravity by 3D-clinostat that produces an unloading environment. Based on microarray profiling, we focused on Fat1 that implicated in the formation and rearrangement of actin fibers. Next, we examined the relationship between the distribution of Fat1 proteins and actin fibers after cyclic tensile strain and microgravity. As a result, Fat1 proteins did not colocalize with actin stress fibers after cyclic tensile strain, but accumulated near the cell membrane and colocalized with cortical actin fibers after microgravity. Our findings indicate that Fat1 may mediate the rearrangement of cortical actin fibers induced by mechanical unloading.


Subject(s)
Actins , Cadherins , Chondrocytes , Weightlessness , Animals , Mice , Stress, Mechanical
2.
Phys Ther Res ; 23(2): 113-122, 2020.
Article in English | MEDLINE | ID: mdl-33489648

ABSTRACT

OBJECTIVE: Joint contractures are a major complication following joint immobilization. However, no fully effective treatment has yet been found. Recently, carbon dioxide (CO2) therapy was developed and verified this therapeutic application in various disorders. We aimed to verify the efficacy of transcutaneous CO2 therapy for immobilization-induced joint contracture. METHOD: Twenty-two Wistar rats were randomly assigned to three groups: caged control, those untreated after joint immobilization, and those treated after joint immobilization. The rats were treated with CO2 for 20 min once a daily either during immobilization, (prevention) or during remobilization after immobilization (treatment). Knee extension motion was measured with a goniometer, and the muscular and articular factors responsible for contractures were calculated. We evaluated muscle fibrosis, fibrosis-related genes (collagen Type 1α1 and TGF-ß1) in muscles, synovial intima's length, and fibrosis-related proteins (Type I collagen and TGF-ß1) in the joint capsules. RESULTS: CO2 therapy for prevention and treatment improved the knee extension motion. Muscular and articular factors decreased in rats of the treatment group. The muscular fibrosis of treated rats decreased in the treatment group. Although CO2 therapy did not repress the increased expression of collagen Type 1α1, the therapy decreased the expression of TGF-ß1 in the treatment group. CO2 therapy for treatment improved the shortening of the synovial membrane after immobilization and decreased the immunolabeling of TGF-ß1 in the joint capsules. CONCLUSIONS: CO2 therapy may prevent and treat contractures after joint immobilization, and appears to be more effective as a treatment strategy for the deterioration of contractures during remobilization.

3.
Phys Ther Res ; 20(2): 44-50, 2017.
Article in English | MEDLINE | ID: mdl-29333362

ABSTRACT

OBJECTIVE: Sit-to-stand motion (STS) is a dynamic motion utilized in fundamental activities of daily living and requires extensive joint movement in the lower extremities and the trunk and coordination of multiple body segments. The present study aimed to investigate whether aging affects the motor coordination of joint movements required to stabilize the horizontal and vertical movement of center of mass using the uncontrolled manifold (UCM) analysis. METHOD: We recruited 39 older adults with no musculoskeletal and/or neuromuscular conditions that affected STS, along with 21 healthy younger adults. All subjects performed five STS trials from a chair with the seat height adjusted to the length of their lower leg at a self-selected motion speed. Kinematic data were collected using a three-dimensional motion analysis system. We performed the UCM analysis to assess the effects of joint angle variance (elemental variable) to stabilize the horizontal and vertical movement of COM (performance variable) and calculated the joint angle variance that does not affect COM (VUCM), the variance that affects COM (VORT), and the synergy index (ΔV). RESULTS: ΔV values in the horizontal direction were higher in the older adults than in the younger adults, but ΔV values in the vertical direction were lower in the older adults than in the younger adults. CONCLUSION: Older adults require increasing levels of stabilization of horizontal movement of COM after buttocks-off in the STS maneuver. As a result, variance in the joint angle of the lower extremities indicated no kinematic synergy for stabilizing the vertical movement of COM.

SELECTION OF CITATIONS
SEARCH DETAIL
...