Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Transfusion ; 53(10 Pt 2): 2556-66, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23145866

ABSTRACT

BACKGROUND: To reduce the risk of human parvovirus B19 (B19V) transmission through contaminated blood for transfusion and plasma-derived products, the Japanese Red Cross (JRC) Blood Centers introduced B19V antigen screening by chemiluminescent enzyme immunoassay (CLEIA-B19V) in 2008. STUDY DESIGN AND METHODS: Donor samples that were positive by CLEIA-B19V screening were tested for B19V DNA. The sensitivity of CLEIA-B19V was tested using samples of all three genotypes and B19V DNA-positive donations. B19V DNA-positive donations and pooled plasma were quantitatively assayed for B19V DNA. B19V DNA-positive donations were phylogenetically analyzed by polymerase chain reaction direct sequencing. RESULTS: The sensitivity of CLEIA-B19V was inferred to be approximately 6.3 log IU/mL with the genotype samples and 6.4 log IU/mL with B19V DNA-positive donor samples. Of 417 CLEIA-B19V-positive samples from 1,035,560 donations in Hokkaido, Japan, 101 were positive for B19V DNA. The 198 strains of B19V DNA-positive donations in Hokkaido over the past 15 years clustered exclusively with Genotype 1. After introduction of CLEIA-B19V, the viral load for B19V DNA in all 772 pooled plasma for fractionation from donors in nationwide Japan did not exceed 4 log IU/mL. CONCLUSION: CLEIA-B19V can detect all three genotypes of B19V (viral load >6.3 log IU/mL) and limit the viral load (<4 log IU/mL) in pooled plasma, and thus such screening has further reduced the risk of transfusion-transmitted B19V infection. These results show that CLEIA-B19V screening at the JRC Blood Centers can be an alternative approach to comply with recommendations regarding B19V in the United States and Europe.


Subject(s)
Antigens, Viral/blood , Blood Donors , Luminescent Measurements/methods , Parvoviridae Infections/diagnosis , Parvovirus B19, Human/isolation & purification , Algorithms , Antibody Specificity , Blood Donors/statistics & numerical data , DNA, Viral/blood , DNA, Viral/genetics , Humans , Immunoenzyme Techniques , Japan/epidemiology , Mass Screening/methods , Parvoviridae Infections/blood , Parvoviridae Infections/epidemiology , Parvovirus B19, Human/genetics , Parvovirus B19, Human/immunology , Phylogeny , Polymerase Chain Reaction/methods , Serologic Tests/methods , Viral Load
3.
Vox Sang ; 91(2): 119-25, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16907872

ABSTRACT

BACKGROUND AND OBJECTIVES: Virus inactivation and removal are important prerequisites to ensure the safety of plasma derivatives. For virus inactivation and removal in our coagulation factor VIII (FVIII) product, CROSS EIGHT M, the production process consists of solvent-detergent (S/D) treatment, two chromatography steps and virus filtration with a 35-nm pore-size filter. However, the clearance of non-enveloped viruses was not as good as that of enveloped viruses because non-enveloped viruses are resistant to S/D treatment and are too small to be removed by the filter. In this study, in order to improve the viral safety of the FVIII products, we attempted to replace the 35-nm pore-size virus filter with a 20-nm filter. MATERIALS AND METHODS: The virus-filtration process was validated for the removal of enveloped and non-enveloped model viruses. Several factors that might affect the FVIII yield on filtration were investigated to obtain a higher recovery. The biochemical properties of the FVIII products produced with the 20-nm pore-size filter were compared with those produced by the 35-nm filter. RESULTS: Virus filters of 20-nm pore size effectively removed the small non-enveloped viruses when compared with the 35-nm pore-size virus filter. The permeability of FVIII through the 20-nm pore-size filter was inversely proportional to the concentration of FVIII at filtration, and directly proportional to the amount of postfiltration solution. No differences were observed in the biochemical properties of both FVIII products, such as the structure and stability of the FVIII, the contents and multimeric structure of von Willebrand factor (vWF), and FVIII activation by thrombin. CONCLUSIONS: The virus-clearance efficiency of the FVIII product, CROSS EIGHT M, was markedly increased, in particular against small non-enveloped viruses, by changing the virus filter pore size from 35 nm to 20 nm. It was possible to implement the 20-nm pore-size filter without variation of the biochemical properties or a serious loss of FVIII.


Subject(s)
Factor VIII/isolation & purification , Filtration/instrumentation , Virus Diseases/prevention & control , Virus Inactivation , Factor VIII/chemistry , Filtration/methods , Humans , Permeability , Virion/isolation & purification , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...