Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1095812, 2023.
Article in English | MEDLINE | ID: mdl-36793710

ABSTRACT

Background: The epithelium in the colonic mucosa is implicated in the pathophysiology of various diseases, including inflammatory bowel diseases and colorectal cancer. Intestinal epithelial organoids from the colon (colonoids) can be used for disease modeling and personalized drug screening. Colonoids are usually cultured at 18-21% oxygen without accounting for the physiological hypoxia in the colonic epithelium (3% to <1% oxygen). We hypothesize that recapitulating the in vivo physiological oxygen environment (i.e., physioxia) will enhance the translational value of colonoids as pre-clinical models. Here we evaluate whether human colonoids can be established and cultured in physioxia and compare growth, differentiation, and immunological responses at 2% and 20% oxygen. Methods: Growth from single cells to differentiated colonoids was monitored by brightfield images and evaluated with a linear mixed model. Cell composition was identified by immunofluorescence staining of cell markers and single-cell RNA-sequencing (scRNA-seq). Enrichment analysis was used to identify transcriptomic differences within cell populations. Pro-inflammatory stimuli induced chemokines and Neutrophil gelatinase-associated lipocalin (NGAL) release were analyzed by Multiplex profiling and ELISA. Direct response to a lower oxygen level was analyzed by enrichment analysis of bulk RNA sequencing data. Results: Colonoids established in a 2% oxygen environment acquired a significantly larger cell mass compared to a 20% oxygen environment. No differences in expression of cell markers for cells with proliferation potential (KI67 positive), goblet cells (MUC2 positive), absorptive cells (MUC2 negative, CK20 positive) and enteroendocrine cells (CGA positive) were found between colonoids cultured in 2% and 20% oxygen. However, the scRNA-seq analysis identified differences in the transcriptome within stem-, progenitor- and differentiated cell clusters. Both colonoids grown at 2% and 20% oxygen secreted CXCL2, CXCL5, CXCL10, CXCL12, CX3CL1 and CCL25, and NGAL upon TNF + poly(I:C) treatment, but there appeared to be a tendency towards lower pro-inflammatory response in 2% oxygen. Reducing the oxygen environment from 20% to 2% in differentiated colonoids altered the expression of genes related to differentiation, metabolism, mucus lining, and immune networks. Conclusions: Our results suggest that colonoids studies can and should be performed in physioxia when the resemblance to in vivo conditions is important.


Subject(s)
Hypoxia , Organoids , Humans , Lipocalin-2/genetics , Cell Differentiation , Oxygen
2.
J Gastroenterol ; 56(10): 914-927, 2021 10.
Article in English | MEDLINE | ID: mdl-34414506

ABSTRACT

BACKGROUND: Collagenous colitis (CC) is an inflammatory bowel disease where chronic diarrhoea is the main symptom. Diagnostic markers distinguishing between CC and other causes of chronic diarrhoea remain elusive. This study explores neutrophil gelatinase-associated lipocalin (NGAL) and its mRNA lipocalin2 (LCN2) as histological and faecal disease markers in CC. METHODS: NGAL/LCN2 were studied in colonic biopsies from CC patients before and during budesonide treatment using RNA sequencing (n = 9/group), in situ hybridization (ISH) (n = 13-22/group) and immunohistochemistry (IHC) (n = 14-25/group). Faecal samples from CC (n = 3-28/group), irritable bowel syndrome diarrhoea (IBS-D) (n = 14) and healthy controls (HC) (n = 15) were assayed for NGAL and calprotectin. RESULTS: NGAL/LCN2 protein and mRNA expression were upregulated in active CC vs HC, and vs paired samples of treated CC in clinical remission. IHC and ISH localized increased NGAL/LCN2 mainly to epithelium of active CC, compared to almost absence in HC and treated CC. In contrast, calprotectin was solely expressed in immune cells. Despite great individual differences, faecal NGAL was significantly increased in active CC compared to HC, IBS-D and treated CC and had high test sensitivity. Faecal calprotectin levels were variably increased in active CC, but the values remained below usual clinical cut-offs. CONCLUSION: NGAL/LCN2 is upregulated in the epithelium of active CC and reduced during budesonide-induced clinical remission to the level of HC and IBD-S. This was reflected in NGAL faecal concentrations. We propose NGAL as an IHC marker for disease activity in CC and a potential faecal biomarker discriminating CC from HC and IBS-D.


Subject(s)
Biomarkers/analysis , Colitis, Collagenous/diagnosis , Lipocalin-2/analysis , Adult , China/epidemiology , Colitis, Collagenous/blood , Colitis, Collagenous/epidemiology , Enzyme-Linked Immunosorbent Assay/methods , Feces/enzymology , Feces/microbiology , Female , Humans , Male , Middle Aged
3.
J Crohns Colitis ; 14(7): 920-934, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32020185

ABSTRACT

BACKGROUND AND AIMS: Intestinal epithelial cells [IECs] secrete cytokines that recruit immune cells to the mucosa and regulate immune responses that drive inflammation in inflammatory bowel disease [IBD]. However, experiments in patient-derived IEC models are still scarce. Here, we aimed to investigate how innate immunity and IEC-specific pattern recognition receptor [PRR] signalling can be involved in an enhanced type I interferon [IFN] gene signature observed in colon epithelium of patients with active IBD, with a special focus on secreted ubiquitin-like protein ISG15. METHODS: Gene and protein expression in whole mucosa biopsies and in microdissected human colonic epithelial lining, in HT29 human intestinal epithelial cells and primary 3D colonoids treated with PRR-ligands and cytokines, were detected by transcriptomics, in situ hybridisation, immunohistochemistry, western blots, and enzyme-linked immunosorbent assay [ELISA]. Effects of IEC-secreted cytokines were examined in human peripheral blood mononuclear cells [PBMCs] by multiplex chemokine profiling and ELISA. RESULTS: The type I IFN gene signature in human mucosal biopsies was mimicked in Toll-like receptor TLR3 and to some extent tumour necrosis factor [TNF]-treated human IECs. In intestinal biopsies, ISG15 expression correlated with expression of the newly identified receptor for extracellular ISG15, LFA-1 integrin. ISG15 was expressed and secreted from HT29 cells and primary 3D colonoids through both JAK1-pSTAT-IRF9-dependent and independent pathways. In experiments using PBMCs, we show that ISG15 releases IBD-relevant proinflammatory cytokines such as CXCL1, CXCL5, CXCL8, CCL20, IL1, IL6, TNF, and IFNγ. CONCLUSIONS: ISG15 is secreted from primary IECs upon extracellular stimulation, and mucosal ISG15 emerges as an intriguing candidate for immunotherapy in IBD.


Subject(s)
Colitis, Ulcerative/immunology , Crohn Disease/immunology , Cytokines/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Interferon Type I/genetics , Ubiquitins/metabolism , Biopsy , CD11a Antigen/genetics , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colon/metabolism , Colon/pathology , Crohn Disease/genetics , Crohn Disease/metabolism , Crohn Disease/pathology , Cytokines/genetics , Cytokines/pharmacology , Gene Expression/drug effects , HT29 Cells , Humans , Immunity, Innate , Interferon Type I/metabolism , Interleukin-12/pharmacology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lymphocyte Function-Associated Antigen-1/metabolism , Organoids/metabolism , RNA, Messenger/metabolism , Receptors, Pattern Recognition , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Sequence Analysis, RNA , Signal Transduction/drug effects , Toll-Like Receptor 3 , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitins/genetics , Ubiquitins/pharmacology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...