Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 21(14)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32709110

ABSTRACT

Hypoxia is a common hallmark of solid tumors and is associated with aggressiveness, metastasis and poor outcome. Cancer cells under hypoxia undergo changes in metabolism and there is an intense crosstalk between cancer cells and cells from the tumor microenvironment. This crosstalk is facilitated by small extracellular vesicles (sEVs; diameter between 30 and 200 nm), including exosomes and microvesicles, which carry a cargo of proteins, mRNA, ncRNA and other biological molecules. Hypoxia is known to increase secretion of sEVs and has an impact on the composition of the cargo. This sEV-mediated crosstalk ultimately leads to various biological effects in the proximal tumor microenvironment but also at distant, future metastatic sites. In this review, we discuss the changes induced by hypoxia on sEV secretion and their cargo as well as their effects on the behavior and metabolism of cancer cells, the tumor microenvironment and metastatic events.


Subject(s)
Extracellular Vesicles/pathology , Hypoxia/pathology , Neoplasms/pathology , Animals , Exosomes/metabolism , Exosomes/pathology , Extracellular Vesicles/metabolism , Humans , Hypoxia/complications , Hypoxia/metabolism , Neoplasm Metastasis/pathology , Neoplasms/complications , Neoplasms/metabolism , Tumor Microenvironment
2.
Cancers (Basel) ; 12(3)2020 Mar 14.
Article in English | MEDLINE | ID: mdl-32183388

ABSTRACT

Reduced levels of intratumoural oxygen are associated with hypoxia-induced pro-oncogenic events such as invasion, metabolic reprogramming, epithelial-mesenchymal transition, metastasis and resistance to therapy, all favouring cancer progression. Small extracellular vesicles (EV) shuttle various cargos (proteins, miRNAs, DNA and others). Tumour-derived EVs can be taken up by neighbouring or distant cells in the tumour microenvironment, thus facilitating intercellular communication. The quantity of extracellular vesicle secretion and their composition can vary with changing microenvironmental conditions and disease states. Here, we investigated in melanoma cells the influence of hypoxia on the content and number of secreted EVs. Whole miRNome and proteome profiling revealed distinct expression patterns in normoxic or hypoxic growth conditions. Apart from the well-known miR-210, we identified miR-1290 as a novel hypoxia-associated microRNA, which was highly abundant in hypoxic EVs. On the other hand, miR-23a-5p and -23b-5p were consistently downregulated in hypoxic conditions, while the protein levels of the miR-23a/b-5p-predicted target IPO11 were concomitantly upregulated. Furthermore, hypoxic melanoma EVs exhibit a signature consisting of six proteins (AKR7A2, DDX39B, EIF3C, FARSA, PRMT5, VARS), which were significantly associated with a poor prognosis for melanoma patients, indicating that proteins and/or miRNAs secreted by cancer cells may be exploited as biomarkers.

3.
Mol Cancer ; 16(1): 102, 2017 06 08.
Article in English | MEDLINE | ID: mdl-28595656

ABSTRACT

BACKGROUND: Most melanoma patients with BRAFV600E positive tumors respond well to a combination of BRAF kinase and MEK inhibitors. However, some patients are intrinsically resistant while the majority of patients eventually develop drug resistance to the treatment. For patients insufficiently responding to BRAF and MEK inhibitors, there is an ongoing need for new treatment targets. Cellular metabolism is such a promising new target line: mutant BRAFV600E has been shown to affect the metabolism. METHODS: Time course experiments and a series of western blots were performed in a panel of BRAFV600E and BRAFWT/NRASmut human melanoma cells, which were incubated with BRAF and MEK1 kinase inhibitors. siRNA approaches were used to investigate the metabolic players involved. Reactive oxygen species (ROS) were measured by confocal microscopy and AZD7545, an inhibitor targeting PDKs (pyruvate dehydrogenase kinase) was tested. RESULTS: We show that inhibition of the RAS/RAF/MEK/ERK pathway induces phosphorylation of the pyruvate dehydrogenase PDH-E1α subunit in BRAFV600E and in BRAFWT/NRASmut harboring cells. Inhibition of BRAF, MEK1 and siRNA knock-down of ERK1/2 mediated phosphorylation of PDH. siRNA-mediated knock-down of all PDKs or the use of DCA (a pan-PDK inhibitor) abolished PDH-E1α phosphorylation. BRAF inhibitor treatment also induced the upregulation of ROS, concomitantly with the induction of PDH phosphorylation. Suppression of ROS by MitoQ suppressed PDH-E1α phosphorylation, strongly suggesting that ROS mediate the activation of PDKs. Interestingly, the inhibition of PDK1 with AZD7545 specifically suppressed growth of BRAF-mutant and BRAF inhibitor resistant melanoma cells. CONCLUSIONS: In BRAFV600E and BRAFWT/NRASmut melanoma cells, the increased production of ROS upon inhibition of the RAS/RAF/MEK/ERK pathway, is responsible for activating PDKs, which in turn phosphorylate and inactivate PDH. As part of a possible salvage pathway, the tricarboxylic acid cycle is inhibited leading to reduced oxidative metabolism and reduced ROS levels. We show that inhibition of PDKs by AZD7545 leads to growth suppression of BRAF-mutated and -inhibitor resistant melanoma cells. Thus small molecule PDK inhibitors such as AZD7545, might be promising drugs for combination treatment in melanoma patients with activating RAS/RAF/MEK/ERK pathway mutations (50% BRAF, 25% NRASmut, 11.9% NF1mut).


Subject(s)
Antineoplastic Agents/pharmacology , Energy Metabolism/drug effects , Melanoma/metabolism , Melanoma/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Amino Acid Substitution , Cell Line, Tumor , Cell Proliferation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Genes, ras , Humans , Melanoma/genetics , Phosphorylation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyruvate Dehydrogenase (Lipoamide)/antagonists & inhibitors , Pyruvate Dehydrogenase (Lipoamide)/metabolism , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , RNA, Small Interfering/genetics
4.
Hypoxia (Auckl) ; 4: 135-145, 2016.
Article in English | MEDLINE | ID: mdl-27800515

ABSTRACT

The pyruvate dehydrogenase complex (PDC) is an important gatekeeper enzyme connecting glycolysis to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, it has a strong impact on the glycolytic flux as well as the metabolic phenotype of a cell. PDC activity is regulated via reversible phosphorylation of three serine residues on the pyruvate dehydrogenase (PDH) E1α subunit. Phosphorylation of any of these residues by the PDH kinases (PDKs) leads to a strong decrease in PDC activity. Under hypoxia, the inactivation of the PDC has been described to be dependent on the hypoxia-inducible factor 1 (HIF-1)-induced PDK1 protein upregulation. In this study, we show in two hepatocellular carcinoma cell lines (HepG2 and JHH-4) that, during the adaptation to hypoxia, PDH is already phosphorylated at time points preceding HIF-1-mediated transcriptional events and PDK1 protein upregulation. Using siRNAs and small molecule inhibitor approaches, we show that this inactivation of PDC is independent of HIF-1α expression but that the PDKs need to be expressed and active. Furthermore, we show that reactive oxygen species might be important for the induction of this PDH phosphorylation since it correlates with the appearance of an altered redox state in the mitochondria and is also inducible by H2O2 treatment under normoxic conditions. Overall, these results show that neither HIF-1 expression nor PDK1 upregulation is necessary for the phosphorylation of PDH during the first hours of the adaptation to hypoxia.

5.
Cell Commun Signal ; 14(1): 13, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27282631

ABSTRACT

Extracellular vesicles are cell-derived vesicles, which can transport various cargos out of cells. From their cell of origin, the content molecules (proteins, non-coding RNAs including miRNAs, DNA and others) can be delivered to neighboring or distant cells and as such extracellular vesicles can be regarded as vehicles of intercellular communication or "homing pigeons". Extracellular vesicle shuttling is able to actively modulate the tumor microenvironment and can partake in tumor dissemination. In various diseases, including cancer, levels of extracellular vesicle secretion are altered resulting in different amounts and/or profiles of detectable vesicular cargo molecules and these distinct content profiles are currently being evaluated as biomarkers. Apart from their potential as blood-derived containers of specific biomarkers, the transfer of extracellular vesicles to surrounding cells also appears to be involved in the propagation of phenotypic traits. These interesting properties have put extracellular vesicles into the focus of many recent studies.Here we review findings on the involvement of extracellular vesicles in transferring traits of cancer cells to their surroundings and briefly discuss new data on oncosomes, a larger type of vesicle. A pressing issue in cancer treatment is rapidly evolving resistance to many initially efficient drug therapies. Studies investigating the role of extracellular vesicles in this phenomenon together with a summary of the technical challenges that this field is still facing, are also presented. Finally, emerging areas of research such as the analysis of the lipid composition on extracellular vesicles and cutting-edge techniques to visualise the trafficking of extracellular vesicles are discussed.


Subject(s)
Cell Communication , Extracellular Vesicles/metabolism , Neoplasms/metabolism , Signal Transduction , Animals , Humans
6.
Free Radic Biol Med ; 84: 215-226, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25772011

ABSTRACT

Peroxiredoxin-5 (PRDX5) is a thioredoxin peroxidase that reduces hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. This enzyme is present in the cytosol, mitochondria, peroxisomes, and nucleus in human cells. Antioxidant cytoprotective functions have been previously documented for cytosolic, mitochondrial, and nuclear mammalian PRDX5. However, the exact function of PRDX5 in peroxisomes is still not clear. The aim of this work was to determine the function of peroxisomal PRDX5 in mammalian cells and, more specifically, in glial cells. To study the role of PRDX5 in peroxisomes, the endogenous expression of PRDX5 in murine oligodendrocyte 158N cells was silenced by RNA interference. In addition, human PRDX5 was also overexpressed in peroxisomes using a vector coding for human PRDX5, whose unconventional peroxisomal targeting sequence 1 (PTS1; SQL) was replaced by the prototypical PTS1 SKL. Stable 158N clones were obtained. The antioxidant cytoprotective function of peroxisomal PRDX5 against peroxisomal and mitochondrial KillerRed-mediated reactive oxygen species production as well as H2O2 was examined using MTT viability assays, roGFP2, and C11-BOBIPY probes. Altogether our results show that peroxisomal PRDX5 protects 158N oligodendrocytes against peroxisomal and mitochondrial KillerRed- and H2O2-induced oxidative stress.


Subject(s)
Oligodendroglia/physiology , Peroxiredoxins/physiology , Animals , Antioxidants/metabolism , Cytoprotection , Gene Expression , Humans , Lipid Peroxidation , Mice , Mitochondria , Oxidative Stress , Peroxisomes/enzymology
7.
PLoS One ; 8(9): e72844, 2013.
Article in English | MEDLINE | ID: mdl-24023783

ABSTRACT

In human, the subcellular targeting of peroxiredoxin-5 (PRDX5), a thioredoxin peroxidase, is dependent on the use of multiple alternative transcription start sites and two alternative in-frame translation initiation sites, which determine whether or not the region encoding a mitochondrial targeting sequence (MTS) is translated. In the present study, the abolition of PRDX5 mitochondrial targeting in dog is highlighted and the molecular mechanism underlying the loss of mitochondrial PRDX5 during evolution is examined. Here, we show that the absence of mitochondrial PRDX5 is generalized among the extant canids and that the first events leading to PRDX5 MTS abolition in canids involve a mutation in the more 5' translation initiation codon as well as the appearance of a STOP codon. Furthermore, we found that PRDX5 MTS functionality is maintained in giant panda and northern elephant seal, which are phylogenetically closely related to canids. Also, the functional consequences of the restoration of mitochondrial PRDX5 in dog Madin-Darby canine kidney (MDCK) cells were investigated. The restoration of PRDX5 mitochondrial targeting in MDCK cells, instead of protecting, provokes deleterious effects following peroxide exposure independently of its peroxidase activity, indicating that mitochondrial PRDX5 gains cytotoxic properties under acute oxidative stress in MDCK cells. Altogether our results show that, although mitochondrial PRDX5 cytoprotective function against oxidative stress has been clearly demonstrated in human and rodents, PRDX5 targeting to mitochondria has been evolutionary lost in canids. Moreover, restoration of mitochondrial PRDX5 in dog MDCK cells, instead of conferring protection against peroxide exposure, makes them more vulnerable.


Subject(s)
Peroxiredoxins/chemistry , Peroxiredoxins/metabolism , Amino Acid Sequence , Animals , Cell Line , Dogs , Humans , Molecular Sequence Data , Oxidative Stress/genetics , Oxidative Stress/physiology , Peroxiredoxins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...