Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(27): 17599-605, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27295338

ABSTRACT

The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposited (ALD) of hydrofluoric acid (HF) etch resistant and electrically insulating films for sidewall spacer processing. Silicon nitride (SiN) has been the prototypical material for this need and extensive work has been conducted into realizing sufficiently lower wet etch rates (WERs) as well as leakage currents to meet industry needs. In this work, we report on the development of plasma-enhanced atomic layer deposition (PEALD) composites of SiN and AlN to minimize WER and leakage current density. In particular, the role of aluminum and the optimum amount of Al contained in the composite structures have been explored. Films with near zero WER in dilute HF and leakage currents density similar to pure PEALD SiN films could be simultaneously realized through composites which incorporate ≥13 at. % Al, with a maximum thermal budget of 350 °C.

2.
J Phys Chem B ; 113(20): 7298-307, 2009 May 21.
Article in English | MEDLINE | ID: mdl-19397305

ABSTRACT

We have carried out calculations of the electronic structure of ferredoxin and of the electronic coupling matrix element Hif for electron transfer from reduced ferredoxin to flavin adenine dinucleotide (FAD) and to cluster models of the Au111 surface and a Au111 surface with a mercaptopyridene self-assembled monolayer (SAM). We conclude, based on Hif2, that a gold electrode is approximately 14 times less efficient as an electron acceptor than FAD and that the mercaptopyridine SAM enhances electron transfer. The magnitude of Hif is large enough for these systems that the weak coupling limit approximations may no longer be valid. However, the barrier to electron transfer in the strong coupling limit is computed to be small due to minimal geometry change between oxidized and reduced ferredoxin. MD simulations of the interaction of ferredoxin and protonated pyridine within a water solvation box indicate that the protonated pyridine does strongly orient the ferredoxin, favoring electron transfer as compared to a bare gold surface, where we speculate the orientation of the ferredoxin may be more random.


Subject(s)
Ferredoxins/chemistry , Flavin-Adenine Dinucleotide/chemistry , Gold/chemistry , Models, Molecular , Computer Simulation , Electrodes , Electron Transport , Models, Chemical , Protein Conformation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...