Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol Clin Exp Res (Hoboken) ; 47(8): 1530-1543, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37364904

ABSTRACT

BACKGROUND: Prenatal ethanol exposure hinders oxidative stress-mediated neuroblast/neural progenitor cell proliferation by inhibiting G1-S transition, a process vital to neocortical development. We previously showed that ethanol elicits this redox imbalance by repressing cystathionine γ-lyase (CSE), the rate-limiting enzyme in the transsulfuration pathway in fetal brain and cultured cerebral cortical neurons. However, the mechanism by which ethanol impacts the CSE pathway in proliferating neuroblasts is not known. We conducted experiments to define the effects of ethanol on CSE regulation and the molecular signaling events that control this vital pathway. This enabled us to develop an intervention to prevent the ethanol-associated cytostasis. METHODS: Spontaneously immortalized undifferentiated E18 rat neuroblasts from brain cerebral cortex were exposed to ethanol to mimic an acute consumption pattern in humans. We performed loss- and gain-of-function studies to evaluate whether NFATc4 is a transcriptional regulator of CSE. The neuroprotective effects of chlorogenic acid (CGA) against the effects of ethanol were assessed using ROS and GSH/GSSG assays as measures of oxidative stress, transcriptional activation of NFATc4, and expression of NFATc4 and CSE by qRT-PCR and immunoblotting. RESULTS: Ethanol treatment of E18-neuroblast cells elicited oxidative stress and significantly reduced CSE expression with a concomitant decrease in NFATc4 transcriptional activation and expression. In parallel, inhibition of the calcineurin/NFAT pathway by FK506 exaggerated ethanol-induced CSE loss. In contrast, NFATc4 overexpression prevented loss of ethanol-induced CSE. CGA increased and activated NFATc4, amplified CSE expression, rescued ethanol-induced oxidative stress, and averted the cytostasis of neuroblasts by rescuing cyclin D1 expression. CONCLUSIONS: These findings demonstrate that ethanol can perturb CSE-dependent redox homeostasis by impairing the NFATc4 signaling pathway in neuroblasts. Notably, ethanol-associated impairments were rescued by genetic or pharmacological activation of NFATc4. Furthermore, we found a potential role for CGA in mitigating the ethanol-related neuroblast toxicity with a compelling connection to the NFATc4/CSE pathway.

2.
Mol Neurobiol ; 60(1): 235-246, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36258136

ABSTRACT

We have previously shown that selective inhibition of histone deacetylase 3 (HDAC3) decreases infarct volume and improves long-term functional outcomes after stroke. In this study, we examined the effects of HDAC3 inhibition on cerebral edema and blood-brain barrier (BBB) leakage and explored its underlying mechanisms. Adult male Wistar rats were subjected to 2-h middle cerebral artery occlusion (MCAO) and randomly treated i.p. with either vehicle or a selective HDAC3 inhibitor (RGFP966) at 2 and 24 h after stroke. Modified neurological severity scores (mNSS) were calculated at 2 h, 1 day, and 3 days. H&E, Evans blue dye (EBD) assay, and fluorescein isothiocyanate (FITC)-dextran were employed to assess cerebral edema and BBB leakage. Western blot for matrix metalloproteinase-9 (MMP9), MMP-9 zymography, and immunostaining for HDAC3, GFAP, Iba-1, albumin, aquaporin-4, claudin-5, ZO-1, and NF-kB were performed. Early RGFP966 administration decreased cerebral edema (p = 0.002) and BBB leakage, as measured by EBD assay, FITC-dextran, and albumin extravasation (p < 0.01). RGFP966 significantly increased tight junction proteins (claudin-5 and ZO-1) in the peri-infarct area. RGFP966 also significantly decreased HDAC3 in GFAP + astrocytes, which correlated with better mNSS (r = 0.67, p = 0.03) and decreased cerebral edema (r = 0.64, p = 0.04). RGFP966 decreased aquaporin-4 in GFAP + astrocytes (p = 0.002), as well as, the inflammatory markers Iba-1, NF-kB, and MMP9 in the ischemic brain (p < 0.05). Early HDAC3 inhibition decreases cerebral edema and BBB leakage. BBB protection by RGFP966 is mediated in part by the upregulation of tight junction proteins, downregulation of aquaporin-4 and HDAC3 in astrocytes, and decreased neuroinflammation.


Subject(s)
Aquaporins , Brain Edema , Stroke , Rats , Animals , Male , Blood-Brain Barrier/metabolism , Brain Edema/complications , Brain Edema/drug therapy , Brain Edema/metabolism , Claudin-5/metabolism , Matrix Metalloproteinase 9/metabolism , NF-kappa B/metabolism , Rats, Wistar , Stroke/complications , Stroke/drug therapy , Stroke/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Evans Blue/metabolism , Evans Blue/pharmacology , Albumins/metabolism , Aquaporins/metabolism
3.
Biol Psychiatry ; 91(1): 43-52, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34274109

ABSTRACT

There is compelling evidence that sex and gender have crucial roles in excessive alcohol (ethanol) consumption. Here, we review some of the data from the perspective of brain transcriptional differences between males and females, focusing on rodent animal models. A key emerging transcriptional feature is the role of neuroimmune processes. Microglia are the resident neuroimmune cells in the brain and exhibit substantial functional differences between males and females. Selective breeding for binge ethanol consumption and the impacts of chronic ethanol consumption and withdrawal from chronic ethanol exposure all demonstrate sex-dependent neuroimmune signatures. A focus is on resolving sex-dependent differences in transcriptional responses to ethanol at the neurocircuitry level. Sex-dependent transcriptional differences are found in the extended amygdala and the nucleus accumbens. Telescoping of ethanol consumption is found in some, but not all, studies to be more prevalent in females. Recent transcriptional studies suggest that some sex differences may be due to female-dependent remodeling of the primary cilium. An interesting theme appears to be developing: at least from the animal model perspective, even when males and females are phenotypically similar, they differ significantly at the level of the transcriptome.


Subject(s)
Alcoholism , Alcohol Drinking/genetics , Animals , Brain , Female , Male , Sex Characteristics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...