Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 183(7): 1913-1929.e26, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33333020

ABSTRACT

Neurons in the cerebral cortex connect through descending pathways to hindbrain and spinal cord to activate muscle and generate movement. Although components of this pathway have been previously generated and studied in vitro, the assembly of this multi-synaptic circuit has not yet been achieved with human cells. Here, we derive organoids resembling the cerebral cortex or the hindbrain/spinal cord and assemble them with human skeletal muscle spheroids to generate 3D cortico-motor assembloids. Using rabies tracing, calcium imaging, and patch-clamp recordings, we show that corticofugal neurons project and connect with spinal spheroids, while spinal-derived motor neurons connect with muscle. Glutamate uncaging or optogenetic stimulation of cortical spheroids triggers robust contraction of 3D muscle, and assembloids are morphologically and functionally intact for up to 10 weeks post-fusion. Together, this system highlights the remarkable self-assembly capacity of 3D cultures to form functional circuits that could be used to understand development and disease.


Subject(s)
Cerebral Cortex/physiology , Motor Cortex/physiology , Organoids/physiology , Animals , Calcium/metabolism , Cell Differentiation , Cells, Cultured , Cervical Vertebrae , Gene Expression Regulation , Glutamates/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Muscles/physiology , Myoblasts/metabolism , Nerve Net/physiology , Optogenetics , Organoids/ultrastructure , Rhombencephalon/physiology , Spheroids, Cellular/cytology , Spinal Cord/cytology
2.
Adv Exp Med Biol ; 1129: 63-79, 2019.
Article in English | MEDLINE | ID: mdl-30968361

ABSTRACT

In this review, we describe the BD Rhapsody™ Single-Cell Analysis System, a platform that allows high-throughput capture of nucleic acids from single cells using a simple cartridge workflow and a multitier barcoding system. The resulting captured information can be used to generate various types of next-generation sequencing (NGS) libraries, including whole transcriptome analysis for discovery biology and targeted RNA analysis for high sensitivity transcript detection. The BD Rhapsody system can be used with emerging applications, such as BD™ AbSeq assays, to profile gene expression in both mRNA and protein level to provide ultra-high resolution analysis of single cells.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing , RNA, Messenger/analysis , Single-Cell Analysis/instrumentation , Single-Cell Analysis/methods , Sequence Analysis, RNA , Transcriptome
3.
Nat Methods ; 16(1): 75-78, 2019 01.
Article in English | MEDLINE | ID: mdl-30573846

ABSTRACT

The differentiation of pluripotent stem cells in three-dimensional cultures can recapitulate key aspects of brain development, but protocols are prone to variable results. Here we differentiated multiple human pluripotent stem cell lines for over 100 d using our previously developed approach to generate brain-region-specific organoids called cortical spheroids and, using several assays, found that spheroid generation was highly reliable and consistent. We anticipate the use of this approach for large-scale differentiation experiments and disease modeling.


Subject(s)
Organoids/growth & development , Tissue Engineering , Cell Line , Humans , Pluripotent Stem Cells/cytology , Prosencephalon/physiology , Reproducibility of Results , Sequence Analysis, RNA , Single-Cell Analysis/methods
4.
Am J Physiol Renal Physiol ; 308(11): F1306-15, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25810438

ABSTRACT

The aldosterone-sensitive distal nephron (ASDN) exhibits axial heterogeneity in structure and function from the distal convoluted tubule to the medullary collecting duct. Ion and water transport is primarily divided between the cortex and medulla of the ASDN, respectively. Transcellular transport in this segment is highly regulated in health and disease and is integrated across different cell types. We currently lack an inexpensive, high-yield, and tractable technique to harvest and culture cells for the study of gene expression and physiological properties of mouse cortical ASDN. To address this need, we harvested tubules bound to Dolichos biflorus agglutinin lectin-coated magnetic beads from the kidney cortex and characterized these cell preparations. We determined that these cells are enriched for markers of distal convoluted tubule, connecting tubule, and cortical collecting duct, including principal and intercalated cells. In primary culture, these cells develop polarized monolayers with high resistance (1,000-1,500 Ω * cm(2)) and maintain expression and activity of key channels. These cells demonstrate an amiloride-sensitive short-circuit current that can be enhanced with aldosterone and maintain measurable potassium and anion secretion. Our method can be easily adopted to study the biology of the ASDN and to investigate phenotypic differences between wild-type and transgenic mouse models.


Subject(s)
Aldosterone/metabolism , Kidney Tubules, Collecting/metabolism , Kidney Tubules, Distal/metabolism , Nephrons/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Kidney Tubules, Distal/drug effects , Mice, Inbred C57BL , Nephrons/drug effects , Potassium/metabolism
5.
Nat Rev Endocrinol ; 11(1): 14-28, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25287283

ABSTRACT

Stem cells are endowed with the potential for self-renewal and multipotency. Pluripotent embryonic stem cells have an early role in the formation of the three germ layers (ectoderm, mesoderm and endoderm), whereas adult tissue stem cells and progenitor cells are critical mediators of organ homeostasis. The adrenal cortex is an exceptionally dynamic endocrine organ that is homeostatically maintained by paracrine and endocrine signals throughout postnatal life. In the past decade, much has been learned about the stem and progenitor cells of the adrenal cortex and the multiple roles that these cell populations have in normal development and homeostasis of the adrenal gland and in adrenal diseases. In this Review, we discuss the evidence for the presence of adrenocortical stem cells, as well as the various signalling molecules and transcriptional networks that are critical for the embryological establishment and postnatal maintenance of this vital population of cells. The implications of these pathways and cells in the pathophysiology of disease are also addressed.


Subject(s)
Adrenal Cortex/growth & development , Adrenal Cortex/physiology , Endocrine System Diseases/physiopathology , Pluripotent Stem Cells/physiology , Stem Cell Niche , Adrenal Cortex/metabolism , Animals , Endocrine System Diseases/metabolism , Humans , Pluripotent Stem Cells/metabolism , Signal Transduction
6.
Mol Endocrinol ; 28(9): 1471-86, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25029241

ABSTRACT

Wnt/ß-catenin (ßcat) signaling is critical for adrenal homeostasis. To elucidate how Wnt/ßcat signaling elicits homeostatic maintenance of the adrenal cortex, we characterized the identity of the adrenocortical Wnt-responsive population. We find that Wnt-responsive cells consist of sonic hedgehog (Shh)-producing adrenocortical progenitors and differentiated, steroidogenic cells of the zona glomerulosa, but not the zona fasciculata and rarely cells that are actively proliferating. To determine potential direct inhibitory effects of ßcat signaling on zona fasciculata-associated steroidogenesis, we used the mouse ATCL7 adrenocortical cell line that serves as a model system of glucocorticoid-producing fasciculata cells. Stimulation of ßcat signaling caused decreased corticosterone release consistent with the observed reduced transcription of steroidogenic genes Cyp11a1, Cyp11b1, Star, and Mc2r. Decreased steroidogenic gene expression was correlated with diminished steroidogenic factor 1 (Sf1; Nr5a1) expression and occupancy on steroidogenic promoters. Additionally, ßcat signaling suppressed the ability of Sf1 to transactivate steroidogenic promoters independent of changes in Sf1 expression level. To investigate Sf1-independent effects of ßcat on steroidogenesis, we used Affymetrix gene expression profiling of Wnt-responsive cells in vivo and in vitro. One candidate gene identified, Ccdc80, encodes a secreted protein with unknown signaling mechanisms. We report that Ccdc80 is a novel ßcat-regulated gene in adrenocortical cells. Treatment of adrenocortical cells with media containing secreted Ccdc80 partially phenocopies ßcat-induced suppression of steroidogenesis, albeit through an Sf1-independent mechanism. This study reveals multiple mechanisms of ßcat-mediated suppression of steroidogenesis and suggests that Wnt/ßcat signaling may regulate adrenal homeostasis by inhibiting fasciculata differentiation and promoting the undifferentiated state of progenitor cells.


Subject(s)
Adrenal Cortex/metabolism , Steroids/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Adrenal Cortex Hormones/metabolism , Animals , Cell Differentiation , Chromatin Immunoprecipitation , DNA-Binding Proteins/metabolism , Extracellular Matrix Proteins , Gene Expression Profiling , Gene Expression Regulation , Glucocorticoids/metabolism , Glycoproteins/metabolism , HEK293 Cells , Hedgehog Proteins/metabolism , Homeostasis , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Transgenic , Mutagenesis , Oligonucleotide Array Sequence Analysis , RNA Splicing Factors , Subcellular Fractions , Transcription Factors/metabolism , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...