Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Digit Pathol (2019) ; 2019: 3-10, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31579322

ABSTRACT

Faced with the need to support a growing number of whole slide imaging (WSI) file formats, our team has extended a long-standing community file format (OME-TIFF) for use in digital pathology. The format makes use of the core TIFF specification to store multi-resolution (or "pyramidal") representations of a single slide in a flexible, performant manner. Here we describe the structure of this format, its performance characteristics, as well as an open-source library support for reading and writing pyramidal OME-TIFFs.

2.
R Soc Open Sci ; 3(10): 160658, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27853583

ABSTRACT

This study shows that the core planar cell polarity (PCP) genes direct the aligned cell migration in the adult corneal epithelium, a stratified squamous epithelium on the outer surface of the vertebrate eye. Expression of multiple core PCP genes was demonstrated in the adult corneal epithelium. PCP components were manipulated genetically and pharmacologically in human and mouse corneal epithelial cells in vivo and in vitro. Knockdown of VANGL2 reduced the directional component of migration of human corneal epithelial (HCE) cells without affecting speed. It was shown that signalling through PCP mediators, dishevelled, dishevelled-associated activator of morphogenesis and Rho-associated protein kinase directs the alignment of HCE cells by affecting cytoskeletal reorganization. Cells in which VANGL2 was disrupted tended to misalign on grooved surfaces and migrate across, rather than parallel to the grooves. Adult corneal epithelial cells in which Vangl2 had been conditionally deleted showed a reduced rate of wound-healing migration. Conditional deletion of Vangl2 in the mouse corneal epithelium ablated the normal highly stereotyped patterns of centripetal cell migration in vivo from the periphery (limbus) to the centre of the cornea. Corneal opacity owing to chronic wounding is a major cause of degenerative blindness across the world, and this study shows that Vangl2 activity is required for directional corneal epithelial migration.

3.
Mol Vis ; 22: 990-1004, 2016.
Article in English | MEDLINE | ID: mdl-27563231

ABSTRACT

PURPOSE: Patients with a heterozygous mutation in the gene encoding the transcription factor, PAX6, have a degenerative corneal opacity associated with failure of normal radial epithelial cell migration across the corneal surface and a reported wound healing defect. This study investigated the guidance mechanisms that drive the directed migration of corneal epithelial cells. METHODS: In vivo corneal epithelial wounding was performed in adult wild-type and Pax6(+/-) mice, and the healing migration rates were compared. To investigate the control of the cell migration direction, primary corneal epithelial cells from wild-type and Pax6(+/-) mice were plated on grooved quartz substrates, and alignment relative to the grooves was assayed. A reconstructed corneal culture system was developed in which dissociated wild-type and genetically mutant corneal epithelial cells could be cultured on a de-epithelialized corneal stroma or basement membrane and their migration assayed with time-lapse microscopy. RESULTS: The Pax6(+/-) cells efficiently re-epithelialized corneal wounds in vivo but had mild slowing of healing migration compared to the wild-type. Cells aligned parallel to quartz grooves in vitro, but the Pax6(+/-) cells were less robustly oriented than the wild-type. In the reconstructed corneal culture system, corneal epithelial cells continued to migrate radially, showing that the cells are guided by contact-mediated cues from the basement membrane. Recombining wild-type and Pax6 mutant corneal epithelial cells with wild-type and Pax6 mutant corneal stroma showed that normal Pax6 dosage was required autonomously in the epithelial cells for directed migration. Integrin-mediated attachment to the substrate, and intracellular PI3Kγ activity, were required for migration. Pharmacological inhibition of cAMP signaling randomized migration tracks in reconstructed corneas. CONCLUSIONS: Striking patterns of centripetal migration of corneal epithelial cells observed in vivo are driven by contact-mediated cues operating through an intracellular cAMP pathway, and failure to read these cues underlies the migration defects that accompany corneal degeneration in patients with mutations in PAX6.


Subject(s)
Cell Movement/physiology , Corneal Injuries/physiopathology , Epithelial Cells/physiology , Focal Adhesions/physiology , PAX6 Transcription Factor/physiology , Wound Healing/physiology , Animals , Class Ib Phosphatidylinositol 3-Kinase/physiology , Corneal Stroma/cytology , Cyclic AMP/physiology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Re-Epithelialization/physiology , Signal Transduction/physiology
4.
Methods ; 96: 27-32, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26476368

ABSTRACT

High content screening (HCS) experiments create a classic data management challenge-multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of "final" results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org.


Subject(s)
Computational Biology/statistics & numerical data , Data Mining/statistics & numerical data , High-Throughput Screening Assays/statistics & numerical data , Information Storage and Retrieval/statistics & numerical data , Software , Computational Biology/methods , Datasets as Topic , High-Throughput Screening Assays/methods , Humans , Information Dissemination , Information Storage and Retrieval/methods , Internet
5.
Mamm Genome ; 26(9-10): 441-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26223880

ABSTRACT

Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO's Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org.


Subject(s)
Information Dissemination , Molecular Imaging , Software , Animals , Internet , Publishing
6.
J Immunol ; 193(1): 439-51, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24907348

ABSTRACT

The intestinal epithelium forms a vital barrier between luminal microbes and the underlying mucosal immune system. Epithelial barrier function is maintained by continuous renewal of the epithelium and is pivotal for gut homeostasis. Breaching of the barrier causes mobilization of immune cells to promote epithelial restitution. However, it is not known whether microbes at the luminal surface of a healthy epithelial barrier influence immune cell mobilization to modulate tissue homeostasis. Using a mouse colonic mucosal explant model, we demonstrate that close proximity of luminal microbes to a healthy, intact epithelium results in rapid mucus secretion and movement of Ly6C(+)7/4(+) monocytes closer to epithelial stem cells. These early events are driven by the epithelial MyD88-signaling pathway and result in increased crypt cell proliferation and intestinal stem cell number. Over time, stem cell number and monocyte-crypt stem cell juxtapositioning return to homeostatic levels observed in vivo. We also demonstrate that reduced numbers of tissue Ly6C+ monocytes can suppress Lgr5EGFP+ stem cell expression in vivo and abrogate the response to luminal microbes ex vivo. The functional link between monocyte recruitment and increased crypt cell proliferation was further confirmed using a crypt-monocyte coculture model. This work demonstrates that the healthy gut epithelium mediates communication between luminal bacteria and monocytes, and monocytes can modulate crypt stem cell number and promote crypt cell proliferation to help maintain gut homeostasis.


Subject(s)
Bacteria/immunology , Cell Proliferation , Intestinal Mucosa/immunology , Monocytes/immunology , Stem Cells/immunology , Animals , Antigens, Ly/genetics , Antigens, Ly/immunology , Female , Humans , Intestinal Mucosa/cytology , Male , Mice , Mice, Transgenic , Monocytes/cytology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , Stem Cells/cytology
7.
Mol Vis ; 18: 139-50, 2012.
Article in English | MEDLINE | ID: mdl-22275805

ABSTRACT

PURPOSE: To investigate the roles of intracellular signaling elicited by Hedgehog (Hh) ligands in corneal maintenance and wound healing. METHODS: The expression of Hedgehog pathway components in the cornea was assayed by immunohistochemistry, western blot and reverse-transcription polymerase chain reaction (RT-PCR), in wild-type mice and mice that were heterozygous null for the gene encoding the transcription factor, paired box gene 6 (Pax6).  Corneal epithelial wound healing and cell migration assays were performed after pharmacological upregulation and downregulation of the hedgehog pathway.  Reporter mice, mosaic for expression of the gene encoding ß-galactosidase (LacZ), were crossed to Pax6(+/-) mice, mice heterozygous for the gene encoding GLI-Kruppel family member GLI3, and Pax6(+/-)Gli3(+/-) double heterozygotes, to assay patterns of cell migration and corneal epithelial organization in vivo. RESULTS: Corneal epithelial wound healing rates increased in response to application of Sonic hedgehog (Shh), but only in mice with wild-type Pax6 dosage.  Downregulation of Hedgehog signalling inhibited corneal epithelial cell proliferation.  Pax6(+/-) corneal epithelia showed increased proliferation in response to exogenous Shh, but not increased migration. Desert hedgehog (Dhh) was shown to be the major endogenous ligand, with Shh detectable only by RT-PCR and only after epithelial wounding. The activity of phosphatidylinositol-3-OH kinase-γ (PI3Kγ) was not required for the increased migration response in response to Shh.  Nuclear expression of the activator form of the transcription factor Gli3 (which mediates Hh signalling) was reduced in Pax6(+/-) corneal epithelia. Pax6(+/-)Gli3(+/-) double heterozygotes showed highly disrupted patterns of clonal arrangement of cells in the corneal epithelium. CONCLUSIONS: The data show key roles for endogenous Dhh signalling in maintenance and regeneration of the corneal epithelium, demonstrate an interaction between Pax6 and Hh signalling in the corneal epithelium, and show that failure of Hh signalling pathways is a feature of Pax6(+/-) corneal disease that cannot be remedied pharmacologically by addition of the ligands.


Subject(s)
Epithelium, Corneal/metabolism , Eye Proteins/genetics , Gene Dosage , Hedgehog Proteins/metabolism , Homeodomain Proteins/genetics , Paired Box Transcription Factors/genetics , Regeneration/genetics , Repressor Proteins/genetics , Signal Transduction , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Clone Cells , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Epithelium, Corneal/cytology , Epithelium, Corneal/drug effects , Gene Expression Regulation/drug effects , Hedgehog Proteins/genetics , Heterozygote , Kruppel-Like Transcription Factors/metabolism , Mice , Nerve Tissue Proteins/metabolism , PAX6 Transcription Factor , Peptides/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Regeneration/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Veratrum Alkaloids/pharmacology , Wound Healing/drug effects , Wound Healing/genetics , Zinc Finger Protein Gli3
8.
J Cell Physiol ; 226(6): 1544-53, 2011 Jun.
Article in English | MEDLINE | ID: mdl-20945376

ABSTRACT

Ion flow from intact tissue into epithelial wound sites results in lateral electric currents that may represent a major driver of wound healing cell migration. Use of applied electric fields (EF) to promote wound healing is the basis of Medicare-approved electric stimulation therapy. This study investigated the roles for EFs in wound re-epithelialization, using the Pax6(+/-) mouse model of the human ocular surface abnormality aniridic keratopathy (in which wound healing and corneal epithelial cell migration are disrupted). Both wild-type (WT) and Pax6(+/-) corneal epithelial cells showed increased migration speeds in response to applied EFs in vitro. However, only Pax6(+/+) cells demonstrated consistent directional galvanotaxis towards the cathode, with activation of pSrc signaling, polarized to the leading edges of cells. In vivo, the epithelial wound site normally represents a cathode, but 43% of Pax6(+/-) corneas exhibited reversed endogenous wound-induced currents (the wound was an anode). These corneas healed at the same rate as WT. Surprisingly, epithelial migration did not correlate with direction or magnitude of endogenous currents for WT or mutant corneas. Furthermore, during healing in vivo, no polarization of pSrc was observed. We found little evidence that Src-dependent mechanisms of cell migration, observed in response to applied EFs in vitro, normally exist in vivo. It is concluded that endogenous EFs do not drive long-term directionality of sustained healing migration in this mouse corneal epithelial model. Ion flow from wounds may nevertheless represent an important component of wound signaling initiation.


Subject(s)
Electricity , Epithelium, Corneal/injuries , Epithelium, Corneal/pathology , Wound Healing , Animals , Blotting, Western , Cell Movement , Enzyme Activation , Epithelial Cells/enzymology , Epithelial Cells/pathology , Epithelium, Corneal/enzymology , Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Immunohistochemistry , Mice , PAX6 Transcription Factor , Paired Box Transcription Factors/metabolism , Protein Transport , Repressor Proteins/metabolism , Time Factors , src-Family Kinases/metabolism
9.
Invest Ophthalmol Vis Sci ; 50(3): 1122-8, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19029029

ABSTRACT

PURPOSE: Corneal nerves play essential roles in maintaining the ocular surface through provision of neurotrophic support, but genetic control of corneal innervation is poorly understood. The possibility of a neurotrophic failure in ocular surface disease associated with heterozygosity at the Pax6 locus (aniridia-related keratopathy [ARK]) was investigated. METHODS: Patterns of corneal innervation were studied during development and aging in mice with different Pax6 dosages and in chimeras. Immunohistochemistry and ELISA-based assays were used to determine the molecular basis of defects seen in Pax6 mutants, and wound healing assays were performed. RESULTS: In adults, the Pax6(+/-) epithelium was less densely innervated than the wild-type epithelium, and radial projection of epithelial nerves was disrupted. Neurotrophic support of the corneal epithelium appeared normal. Directed nerve projection correlated with patterns of epithelial cell migration in adult wild-types, but innervation defects observed in Pax6(+/-) mice were not fully corrected in wound healing or chimeric models where directed epithelial migration was restored. CONCLUSIONS: Pax6 dosage nonautonomously controls robust directed radial projection of corneal neurons, and the guidance cues for growth cone guidance are not solely dependent on directed epithelial migration. There is little evidence that ARK represents neurotrophic keratitis.


Subject(s)
Cornea/innervation , Eye Proteins/physiology , Homeodomain Proteins/physiology , Paired Box Transcription Factors/physiology , Repressor Proteins/physiology , Trigeminal Ganglion/physiology , Aging/physiology , Animals , Cell Movement , Cornea/growth & development , Enzyme-Linked Immunosorbent Assay , Epithelium, Corneal/physiology , Female , Fluorescent Antibody Technique, Indirect , Male , Mice , Mice, Inbred CBA , Mice, Knockout , Nerve Fibers , Nerve Regeneration/physiology , PAX6 Transcription Factor , Substance P/metabolism , Tubulin/metabolism , Wound Healing/physiology
10.
J Cell Physiol ; 214(3): 595-603, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17941082

ABSTRACT

Endothelialization repairs the lining of damaged vasculature and is a key process in preventing thrombosis and restenosis. It has been demonstrated that extracellular calcium ([Ca2+](o)) influx is important for subsequent endothelialization. The role of intracellular Ca2+ stores in mechanical denudation induced intracellular calcium ([Ca2+](i)) rise and endothelialization remains to be demonstrated. Using monolayer culture of a human endothelial cell line (human umbilical vein endothelial cell, HUVEC), we investigated [Ca2+](i) wave propagation and re-endothelialization following mechanical denudation. Consistent with previous reports for other types of cells, mechanical denudation induces calcium influx, which is essential for [Ca2+](i) rise and endothelialization. Moreover, we found that intracellular Ca(2+) stores are also essential for denudation induced [Ca2+](i) wave initiation and propagation, and the subsequent endothelialization. Thapsigargin which depletes intracellular Ca2+ stores completely abolished [Ca2+](i) wave generation and endothelialization. Xestospongin C (XeC), which prevents Ca2+ release from intracellular Ca2+ stores by inhibition of inositol 1,4,5-trisphosphate (IP(3)) receptor, inhibited intercellular Ca2+ wave generation and endothelialization following denudation. Purinergic signaling through a suramin sensitive mechanism and gap junction communication also contribute to in intercellular Ca(2+) wave propagation and re-endothelialization. We conclude that intracellular Ca2+ stores, in addition to extracellular Ca2+, are essential for intracellular Ca2+ signaling and subsequent endothelialization following mechanical denudation.


Subject(s)
Calcium Signaling , Endothelial Cells/metabolism , Endothelial Cells/pathology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Cobalt/pharmacology , Endothelial Cells/drug effects , Gap Junctions/drug effects , Gap Junctions/metabolism , Humans , Receptors, Purinergic/metabolism
11.
Appl Environ Microbiol ; 74(1): 294-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17981940

ABSTRACT

In this study, the feasibility of fluorescence lifetime imaging (FLIM) for measurement of RNA:DNA ratios in microorganisms was assessed. The fluorescence lifetime of a nucleic acid-specific probe (SYTO 13) was used to directly measure the RNA:DNA ratio inside living bacterial cells. In vitro, SYTO 13 showed shorter fluorescence lifetimes in DNA solutions than in RNA solutions. Growth experiments with bacterial monocultures were performed in liquid media. The results demonstrated the suitability of SYTO 13 for measuring the growth-phase-dependent RNA:DNA ratio in Escherichia coli cells. The fluorescence lifetime of SYTO 13 reflected the known changes of the RNA:DNA ratio in microbial cells during different growth phases. As a result, the growth rate of E. coli cells strongly correlated with the fluorescence lifetime. Finally, the fluorescence lifetimes of SYTO 13 in slow- and fast-growing biofilms were compared. For this purpose, biofilms developed from activated sludge were grown as autotrophic and heterotrophic communities. The FLIM data clearly showed a longer fluorescence lifetime for the fast-growing heterotrophic biofilms and a shorter fluorescence lifetime for the slow-growing autotrophic biofilms. Furthermore, starved biofilms showed shorter lifetimes than biofilms supplied with glucose, indicating a lower RNA:DNA ratio in starved biofilms. It is suggested that FLIM in combination with SYTO 13 represents a useful tool for the in situ differentiation of active and inactive bacteria. The technique does not require radioactive chemicals and may be applied to a broad range of sample types, including suspended and immobilized microorganisms.


Subject(s)
Bacteria/growth & development , In Situ Hybridization, Fluorescence/methods , Microscopy, Fluorescence/methods , Bacteria/chemistry , Biofilms/growth & development , DNA, Bacterial/analysis , Organic Chemicals/metabolism , RNA, Bacterial/analysis , Sewage/microbiology
12.
J Cell Sci ; 119(Pt 22): 4741-8, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17077123

ABSTRACT

Intracellular free Ca2+ ([Ca2+](i)) is a pivotal signalling element in cell migration and is thought to be required for chemotaxis of Dictyostelium. Ca2+ signalling may also be important for electrotaxis. However this suggestion has been controversial. We show that electric fields direct Dictyostelium cells to migrate cathodally and increase [Ca2+](i) in Dictyostelium cells, as determined by Fluo-3 AM imaging and (45)Ca2+ uptake. Omission of extracellular Ca2+([Ca2+](e)) and incubation with EGTA abolished the electric-field-stimulated [Ca2+](i) rise and directional cell migration. This suggests a requirement for [Ca2+](e) in the electrotactic response. Deletion of iplA, a gene responsible for chemoattractant-induced [Ca2+](i) increase, had only a minor effect on the electric-field-induced [Ca2+](i) rise. Moreover, iplA-null Dictyostelium cells showed the same electrotactic response as wild-type cells. Therefore, iplA-independent Ca2+ influx is necessary for electrotactic cell migration. These results suggest that the [Ca2+](i) regulatory mechanisms induced by electric fields are different from those induced by cAMP and folic acid in Dictyostelium cells. Different roles of the iplA gene in chemoattractant-induced and electrically induced Ca2+ signalling, and different effects of [Ca2+](i) elevation on chemotaxis and electrotaxis indicate that the chemoattractant and electric cues activate distinctive initial signalling elements.


Subject(s)
Calcium/metabolism , Cell Movement , Dictyostelium/physiology , Animals , Chemotaxis/physiology , Cyclic AMP/physiology , Dictyostelium/metabolism , Electromagnetic Fields , Folic Acid/physiology , Mutation , Protozoan Proteins/genetics , Protozoan Proteins/physiology
13.
BMC Biol ; 4: 27, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-16914058

ABSTRACT

BACKGROUND: Congenital aniridia caused by heterozygousity at the PAX6 locus is associated with ocular surface disease including keratopathy. It is not clear whether the keratopathy is a direct result of reduced PAX6 gene dosage in the cornea itself, or due to recurrent corneal trauma secondary to defects such as dry eye caused by loss of PAX6 in other tissues. We investigated the hypothesis that reducing Pax6 gene dosage leads to corneal wound-healing defects. and assayed the immediate molecular responses to wounding in wild-type and mutant corneal epithelial cells. RESULTS: Pax6+/- mouse corneal epithelia exhibited a 2-hour delay in their response to wounding, but subsequently the cells migrated normally to repair the wound. Both Pax6+/+ and Pax6+/- epithelia activated immediate wound-induced waves of intracellular calcium signaling. However, the intensity and speed of propagation of the calcium wave, mediated by release from intracellular stores, was reduced in Pax6+/- cells. Initiation and propagation of the calcium wave could be largely decoupled, and both phases of the calcium wave responses were required for wound healing. Wounded cells phosphorylated the extracellular signal-related kinases 1/2 (phospho-ERK1/2). ERK1/2 activation was shown to be required for rapid initiation of wound healing, but had only a minor effect on the rate of cell migration in a healing epithelial sheet. Addition of exogenous epidermal growth factor (EGF) to wounded Pax6+/- cells restored the calcium wave, increased ERK1/2 activation and restored the immediate healing response to wild-type levels. CONCLUSION: The study links Pax6 deficiency to a previously overlooked wound-healing delay. It demonstrates that defective calcium signaling in Pax6+/- cells underlies this delay, and shows that it can be pharmacologically corrected. ERK1/2 phosphorylation is required for the rapid initiation of wound healing. A model is presented whereby minor abrasions, which are quickly healed in normal corneas, transiently persist in aniridic patients, compromising the corneal stroma.


Subject(s)
Calcium Signaling/physiology , Epithelium, Corneal/injuries , Epithelium, Corneal/metabolism , Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Paired Box Transcription Factors/metabolism , Repressor Proteins/metabolism , Wound Healing/physiology , Animals , Cells, Cultured , Mice , PAX6 Transcription Factor , Phosphorylation
14.
Nature ; 442(7101): 457-60, 2006 Jul 27.
Article in English | MEDLINE | ID: mdl-16871217

ABSTRACT

Wound healing is essential for maintaining the integrity of multicellular organisms. In every species studied, disruption of an epithelial layer instantaneously generates endogenous electric fields, which have been proposed to be important in wound healing. The identity of signalling pathways that guide both cell migration to electric cues and electric-field-induced wound healing have not been elucidated at a genetic level. Here we show that electric fields, of a strength equal to those detected endogenously, direct cell migration during wound healing as a prime directional cue. Manipulation of endogenous wound electric fields affects wound healing in vivo. Electric stimulation triggers activation of Src and inositol-phospholipid signalling, which polarizes in the direction of cell migration. Notably, genetic disruption of phosphatidylinositol-3-OH kinase-gamma (PI(3)Kgamma) decreases electric-field-induced signalling and abolishes directed movements of healing epithelium in response to electric signals. Deletion of the tumour suppressor phosphatase and tensin homolog (PTEN) enhances signalling and electrotactic responses. These data identify genes essential for electrical-signal-induced wound healing and show that PI(3)Kgamma and PTEN control electrotaxis.


Subject(s)
PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Wound Healing , Animals , Cell Movement , Class Ib Phosphatidylinositol 3-Kinase , Dictyostelium , Electric Stimulation , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...