Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Br J Pharmacol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38922847

ABSTRACT

BACKGROUND AND PURPOSE: Inhibitors of voltage-gated sodium channels (NaVs) are important anti-epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non-selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs. EXPERIMENTAL APPROACH: We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain-of-function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild-type mice. KEY RESULTS: Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6-Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild-type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms. CONCLUSIONS AND IMPLICATIONS: Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti-seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.

2.
ACS Chem Neurosci ; 15(6): 1169-1184, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38359277

ABSTRACT

Voltage-gated sodium channel (NaV) inhibitors are used to treat neurological disorders of hyperexcitability such as epilepsy. These drugs act by attenuating neuronal action potential firing to reduce excitability in the brain. However, all currently available NaV-targeting antiseizure medications nonselectively inhibit the brain channels NaV1.1, NaV1.2, and NaV1.6, which potentially limits the efficacy and therapeutic safety margins of these drugs. Here, we report on XPC-7724 and XPC-5462, which represent a new class of small molecule NaV-targeting compounds. These compounds specifically target inhibition of the NaV1.6 and NaV1.2 channels, which are abundantly expressed in excitatory pyramidal neurons. They have a > 100-fold molecular selectivity against NaV1.1 channels, which are predominantly expressed in inhibitory neurons. Sparing NaV1.1 preserves the inhibitory activity in the brain. These compounds bind to and stabilize the inactivated state of the channels thereby reducing the activity of excitatory neurons. They have higher potency, with longer residency times and slower off-rates, than the clinically used antiseizure medications carbamazepine and phenytoin. The neuronal selectivity of these compounds is demonstrated in brain slices by inhibition of firing in cortical excitatory pyramidal neurons, without impacting fast spiking inhibitory interneurons. XPC-5462 also suppresses epileptiform activity in an ex vivo brain slice seizure model, whereas XPC-7224 does not, suggesting a possible requirement of Nav1.2 inhibition in 0-Mg2+- or 4-AP-induced brain slice seizure models. The profiles of these compounds will facilitate pharmacological dissection of the physiological roles of NaV1.2 and NaV1.6 in neurons and help define the role of specific channels in disease states. This unique selectivity profile provides a new approach to potentially treat disorders of neuronal hyperexcitability by selectively downregulating excitatory circuits.


Subject(s)
Epilepsy , Voltage-Gated Sodium Channels , Humans , Neurons/metabolism , Voltage-Gated Sodium Channels/metabolism , Epilepsy/metabolism , Brain/metabolism , Seizures/drug therapy , Seizures/metabolism , Action Potentials/physiology
3.
J Pharmacol Exp Ther ; 386(1): 4-14, 2023 07.
Article in English | MEDLINE | ID: mdl-36958846

ABSTRACT

Divalent metal transporter 1 (DMT1) cotransports ferrous iron and protons and is the primary mechanism for uptake of nonheme iron by enterocytes. Inhibitors are potentially useful as therapeutic agents to treat iron overload disorders such as hereditary hemochromatosis or ß-thalassemia intermedia, provided that inhibition can be restricted to the duodenum. We used a calcein quench assay to identify human DMT1 inhibitors. Dimeric compounds were made to generate more potent compounds with low systemic exposure. Direct block of DMT1 was confirmed by voltage clamp measurements. The lead compound, XEN602, strongly inhibits dietary nonheme iron uptake in both rats and pigs yet has negligible systemic exposure. Efficacy is maintained for >2 weeks in a rat subchronic dosing assay. Doses that lowered iron content in the spleen and liver by >50% had no effect on the tissue content of other divalent cations except for cobalt. XEN602 represents a powerful pharmacological tool for understanding the physiologic function of DMT1 in the gut. SIGNIFICANCE STATEMENT: This report introduces methodology to develop potent, gut-restricted inhibitors of divalent metal transporter 1 (DMT1) and identifies XEN602 as a suitable compound for in vivo studies. We also report novel animal models to quantify the inhibition of dietary uptake of iron in both rodents and pigs. This research shows that inhibition of DMT1 is a promising means to treat iron overload disorders.


Subject(s)
Iron Overload , Humans , Rats , Animals , Swine , Iron Overload/drug therapy , Iron/metabolism , Biological Transport , Iron-Binding Proteins/metabolism , Models, Animal
4.
Front Cell Neurosci ; 16: 964691, 2022.
Article in English | MEDLINE | ID: mdl-36246527

ABSTRACT

Voltage-gated sodium channels (Nav) are essential for the initiation and propagation of action potentials in neurons. Of the nine human channel subtypes, Nav1.1, Nav1.2 and Nav1.6 are prominently expressed in the adult central nervous system (CNS). All three of these sodium channel subtypes are sensitive to block by the neurotoxin tetrodotoxin (TTX), with TTX being almost equipotent on all three subtypes. In the present study we have used TTX to determine the fractional block of Nav channels required to impair action potential firing in pyramidal neurons and reduce network seizure-like activity. Using automated patch-clamp electrophysiology, we first determined the IC50s of TTX on mouse Nav1.1, Nav1.2 and Nav1.6 channels expressed in HEK cells, demonstrating this to be consistent with previously published data on human orthologs. We then compared this data to the potency of block of Nav current measured in pyramidal neurons from neocortical brain slices. Interestingly, we found that it requires nearly 10-fold greater concentration of TTX over the IC50 to induce significant block of action potentials using a current-step protocol. In contrast, concentrations near the IC50 resulted in a significant reduction in AP firing and increase in rheobase using a ramp protocol. Surprisingly, a 20% reduction in action potential generation observed with 3 nM TTX resulted in significant block of seizure-like activity in the 0 Mg2+ model of epilepsy. Additionally, we found that approximately 50% block in pyramidal cell intrinsic excitability is sufficient to completely block all seizure-like events. Furthermore, we also show that the anticonvulsant drug phenytoin blocked seizure-like events in a manner similar to TTX. These data serve as a critical starting point in understanding how fractional block of Nav channels affect intrinsic neuronal excitability and seizure-like activity. It further suggests that seizures can be controlled without significantly compromising intrinsic neuronal activity and determines the required fold over IC50 for novel and clinically relevant Nav channel blockers to produce efficacy and limit side effects.

5.
Elife ; 112022 03 02.
Article in English | MEDLINE | ID: mdl-35234610

ABSTRACT

NBI-921352 (formerly XEN901) is a novel sodium channel inhibitor designed to specifically target NaV1.6 channels. Such a molecule provides a precision-medicine approach to target SCN8A-related epilepsy syndromes (SCN8A-RES), where gain-of-function (GoF) mutations lead to excess NaV1.6 sodium current, or other indications where NaV1.6 mediated hyper-excitability contributes to disease (Gardella and Møller, 2019; Johannesen et al., 2019; Veeramah et al., 2012). NBI-921352 is a potent inhibitor of NaV1.6 (IC500.051 µM), with exquisite selectivity over other sodium channel isoforms (selectivity ratios of 756 X for NaV1.1, 134 X for NaV1.2, 276 X for NaV1.7, and >583 Xfor NaV1.3, NaV1.4, and NaV1.5). NBI-921352is a state-dependent inhibitor, preferentially inhibiting inactivatedchannels. The state dependence leads to potent stabilization of inactivation, inhibiting NaV1.6 currents, including resurgent and persistent NaV1.6 currents, while sparing the closed/rested channels. The isoform-selective profile of NBI-921352 led to a robust inhibition of action-potential firing in glutamatergic excitatory pyramidal neurons, while sparing fast-spiking inhibitory interneurons, where NaV1.1 predominates. Oral administration of NBI-921352 prevented electrically induced seizures in a Scn8a GoF mouse,as well as in wild-type mouse and ratseizure models. NBI-921352 was effective in preventing seizures at lower brain and plasma concentrations than commonly prescribed sodium channel inhibitor anti-seizure medicines (ASMs) carbamazepine, phenytoin, and lacosamide. NBI-921352 waswell tolerated at higher multiples of the effective plasma and brain concentrations than those ASMs. NBI-921352 is entering phase II proof-of-concept trials for the treatment of SCN8A-developmental epileptic encephalopathy (SCN8A-DEE) and adult focal-onset seizures.


Subject(s)
Epilepsy , NAV1.6 Voltage-Gated Sodium Channel , Animals , Gain of Function Mutation , Mice , Mutation , NAV1.6 Voltage-Gated Sodium Channel/genetics , Neurons/physiology , Rats , Sodium , Sodium Channel Blockers/pharmacology
6.
J Med Chem ; 64(6): 2953-2966, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33682420

ABSTRACT

Nav1.7 is an extensively investigated target for pain with a strong genetic link in humans, yet in spite of this effort, it remains challenging to identify efficacious, selective, and safe inhibitors. Here, we disclose the discovery and preclinical profile of GDC-0276 (1) and GDC-0310 (2), selective Nav1.7 inhibitors that have completed Phase 1 trials. Our initial search focused on close-in analogues to early compound 3. This resulted in the discovery of GDC-0276 (1), which possessed improved metabolic stability and an acceptable overall pharmacokinetics profile. To further derisk the predicted human pharmacokinetics and enable QD dosing, additional optimization of the scaffold was conducted, resulting in the discovery of a novel series of N-benzyl piperidine Nav1.7 inhibitors. Improvement of the metabolic stability by blocking the labile benzylic position led to the discovery of GDC-0310 (2), which possesses improved Nav selectivity and pharmacokinetic profile over 1.


Subject(s)
Azetidines/pharmacology , Benzamides/pharmacology , Drug Discovery , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Azetidines/chemistry , Azetidines/pharmacokinetics , Benzamides/chemistry , Benzamides/pharmacokinetics , Cells, Cultured , HEK293 Cells , Humans , Piperidines/chemistry , Piperidines/pharmacokinetics , Piperidines/pharmacology , Rats, Sprague-Dawley , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
7.
J Med Chem ; 62(21): 9618-9641, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31525968

ABSTRACT

Nonselective antagonists of voltage-gated sodium (NaV) channels have been long used for the treatment of epilepsies. The efficacy of these drugs is thought to be due to the block of sodium channels on excitatory neurons, primarily NaV1.6 and NaV1.2. However, these currently marketed drugs require high drug exposure and suffer from narrow therapeutic indices. Selective inhibition of NaV1.6, while sparing NaV1.1, is anticipated to provide a more effective and better tolerated treatment for epilepsies. In addition, block of NaV1.2 may complement the anticonvulsant activity of NaV1.6 inhibition. We discovered a novel series of aryl sulfonamides as CNS-penetrant, isoform-selective NaV1.6 inhibitors, which also displayed potent block of NaV1.2. Optimization focused on increasing selectivity over NaV1.1, improving metabolic stability, reducing active efflux, and addressing a pregnane X-receptor liability. We obtained compounds 30-32, which produced potent anticonvulsant activity in mouse seizure models, including a direct current maximal electroshock seizure assay.


Subject(s)
Amides/chemistry , Central Nervous System/metabolism , Epilepsy/drug therapy , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Sodium Channel Blockers/metabolism , Sodium Channel Blockers/pharmacology , Animals , Dogs , Hep G2 Cells , Humans , Madin Darby Canine Kidney Cells , Mice , Models, Molecular , NAV1.6 Voltage-Gated Sodium Channel/chemistry , Protein Domains , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Sodium Channel Blockers/chemistry , Sodium Channel Blockers/therapeutic use , Structure-Activity Relationship
8.
J Med Chem ; 62(2): 908-927, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30499663

ABSTRACT

Herein, we report the discovery and optimization of a series of orally bioavailable acyl sulfonamide NaV1.7 inhibitors that are selective for NaV1.7 over NaV1.5 and highly efficacious in in vivo models of pain and hNaV1.7 target engagement. An analysis of the physicochemical properties of literature NaV1.7 inhibitors suggested that acyl sulfonamides with high fsp3 could overcome some of the pharmacokinetic (PK) and efficacy challenges seen with existing series. Parallel library syntheses lead to the identification of analogue 7, which exhibited moderate potency against NaV1.7 and an acceptable PK profile in rodents, but relatively poor stability in human liver microsomes. Further, design strategy then focused on the optimization of potency against hNaV1.7 and improvement of human metabolic stability, utilizing induced fit docking in our previously disclosed X-ray cocrystal of the NaV1.7 voltage sensing domain. These investigations culminated in the discovery of tool compound 33, one of the most potent and efficacious NaV1.7 inhibitors reported to date.


Subject(s)
Analgesics/chemistry , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Sulfonamides/chemistry , Voltage-Gated Sodium Channel Blockers/chemistry , Analgesics/metabolism , Analgesics/therapeutic use , Animals , Binding Sites , Drug Design , Half-Life , Humans , Male , Mice , Mice, Transgenic , Microsomes, Liver/metabolism , Molecular Docking Simulation , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/chemically induced , Pain/drug therapy , Pain/pathology , Protein Structure, Tertiary , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/therapeutic use
9.
Cell Rep ; 24(12): 3133-3145, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30231997

ABSTRACT

Selective block of NaV1.7 promises to produce non-narcotic analgesic activity without motor or cognitive impairment. Several NaV1.7-selective blockers have been reported, but efficacy in animal pain models required high multiples of the IC50 for channel block. Here, we report a target engagement assay using transgenic mice that has enabled the development of a second generation of selective Nav1.7 inhibitors that show robust analgesic activity in inflammatory and neuropathic pain models at low multiples of the IC50. Like earlier arylsulfonamides, these newer acylsulfonamides target a binding site on the surface of voltage sensor domain 4 to achieve high selectivity among sodium channel isoforms and steeply state-dependent block. The improved efficacy correlates with very slow dissociation from the target channel. Chronic dosing increases compound potency about 10-fold, possibly due to reversal of sensitization arising during chronic injury, and provides efficacy that persists long after the compound has cleared from plasma.


Subject(s)
Analgesics/therapeutic use , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Neuralgia/drug therapy , Sodium Channel Blockers/therapeutic use , Sulfonamides/therapeutic use , Analgesics/pharmacokinetics , Animals , Binding Sites , Cells, Cultured , HEK293 Cells , Humans , Inhibitory Concentration 50 , Mice , NAV1.7 Voltage-Gated Sodium Channel/chemistry , Protein Binding , Sodium Channel Blockers/pharmacokinetics , Sulfonamides/pharmacokinetics
10.
J Med Chem ; 61(11): 4810-4831, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29737846

ABSTRACT

The sodium channel NaV1.7 has emerged as a promising target for the treatment of pain based on strong genetic validation of its role in nociception. In recent years, a number of aryl and acyl sulfonamides have been reported as potent inhibitors of NaV1.7, with high selectivity over the cardiac isoform NaV1.5. Herein, we report on the discovery of a novel series of N-([1,2,4]triazolo[4,3- a]pyridin-3-yl)methanesulfonamides as selective NaV1.7 inhibitors. Starting with the crystal structure of an acyl sulfonamide, we rationalized that cyclization to form a fused heterocycle would improve physicochemical properties, in particular lipophilicity. Our design strategy focused on optimization of potency for block of NaV1.7 and human metabolic stability. Lead compounds 10, 13 (GNE-131), and 25 showed excellent potency, good in vitro metabolic stability, and low in vivo clearance in mouse, rat, and dog. Compound 13 also displayed excellent efficacy in a transgenic mouse model of induced pain.


Subject(s)
Drug Design , NAV1.7 Voltage-Gated Sodium Channel/metabolism , Pain/drug therapy , Sulfonamides/chemistry , Sulfonamides/pharmacology , Voltage-Gated Sodium Channel Blockers/chemistry , Voltage-Gated Sodium Channel Blockers/pharmacology , Amino Acid Sequence , Animals , Dogs , Drug Stability , Humans , Kinetics , Mice , Molecular Conformation , Pain/metabolism , Rats , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Voltage-Gated Sodium Channel Blockers/pharmacokinetics , Voltage-Gated Sodium Channel Blockers/therapeutic use
11.
ACS Med Chem Lett ; 7(3): 277-82, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985315

ABSTRACT

We report on a novel series of aryl sulfonamides that act as nanomolar potent, isoform-selective inhibitors of the human sodium channel hNaV1.7. The optimization of these inhibitors is described. We aimed to improve potency against hNaV1.7 while minimizing off-target safety concerns and generated compound 3. This agent displayed significant analgesic effects in rodent models of acute and inflammatory pain and demonstrated that binding to the voltage sensor domain 4 site of NaV1.7 leads to an analgesic effect in vivo. Our findings corroborate the importance of hNaV1.7 as a drug target for the treatment of pain.

12.
J Immunol ; 184(5): 2539-50, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20107187

ABSTRACT

With the rapid rise in the incidence of multidrug resistant infections, there is substantial interest in host defense peptides as templates for production of new antimicrobial therapeutics. Natural peptides are multifunctional mediators of the innate immune response, with some direct antimicrobial activity and diverse immunomodulatory properties. We have previously developed an innate defense regulator (IDR) 1, with protective activity against bacterial infection mediated entirely through its effects on the immunity of the host, as a novel approach to anti-infective therapy. In this study, an immunomodulatory peptide IDR-1002 was selected from a library of bactenecin derivatives based on its substantially more potent ability to induce chemokines in human PBMCs. The enhanced chemokine induction activity of the peptide in vitro correlated with stronger protective activity in vivo in the Staphylococcus aureus-invasive infection model, with a >5-fold reduction in the protective dose in direct comparison with IDR-1. IDR-1002 also afforded protection against the Gram-negative bacterial pathogen Escherichia coli. Chemokine induction by IDR-1002 was found to be mediated through a Gi-coupled receptor and the PI3K, NF-kappaB, and MAPK signaling pathways. The protective activity of the peptide was associated with in vivo augmentation of chemokine production and recruitment of neutrophils and monocytes to the site of infection. These results highlight the importance of the chemokine induction activity of host defense peptides and demonstrate that the optimization of the ex vivo chemokine-induction properties of peptides is a promising method for the rational development of immunomodulatory IDR peptides with enhanced anti-infective activity.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Bacterial Infections/metabolism , Chemokines/metabolism , Leukocytes/metabolism , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Cell Line , Cells, Cultured , Chemokine CCL2/metabolism , Chemokine CCL7/metabolism , Chemokine CXCL1/metabolism , Female , Humans , Interleukin-8/metabolism , Leukocytes/cytology , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation/drug effects , Staphylococcal Infections/microbiology , Staphylococcal Infections/prevention & control , Staphylococcus aureus/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Nat Biotechnol ; 25(4): 465-72, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17384586

ABSTRACT

We show that an innate defense-regulator peptide (IDR-1) was protective in mouse models of infection with important Gram-positive and Gram-negative pathogens, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus and Salmonella enterica serovar Typhimurium. When given from 48 h before to 6 h after infection, the peptide was effective by both local and systemic administration. Because protection by IDR-1 was prevented by in vivo depletion of monocytes and macrophages, but not neutrophils or B- and T-lymphocytes, we conclude that monocytes and macrophages are key effector cells. IDR-1 was not directly antimicrobial: gene and protein expression analysis in human and mouse monocytes and macrophages indicated that IDR-1, acting through mitogen-activated protein kinase and other signaling pathways, enhanced the levels of monocyte chemokines while reducing pro-inflammatory cytokine responses. To our knowledge, an innate defense regulator that counters infection by selective modulation of innate immunity without obvious toxicities has not been reported previously.


Subject(s)
Anti-Infective Agents/pharmacology , Immunity, Innate/drug effects , Immunity, Innate/immunology , Peptides/pharmacology , Animals , Anti-Infective Agents/therapeutic use , Anti-Infective Agents/toxicity , Bacterial Infections/drug therapy , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Inflammation/immunology , Lipopolysaccharides/pharmacology , Mice , Models, Immunological , Peptides/toxicity , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...