Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 99(11): 113201, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17930437

ABSTRACT

We report on the realization of a time-domain "Stückelberg interferometer", which is based on the internal-state structure of ultracold Feshbach molecules. Two subsequent passages through a weak avoided crossing between two different orbital angular momentum states in combination with a variable hold time lead to high-contrast population oscillations. This allows for a precise determination of the energy difference between the two molecular states. We demonstrate a high degree of control over the interferometer dynamics. The interferometric scheme provides new possibilities for precision measurements with ultracold molecules.

2.
Nature ; 440(7082): 315-8, 2006 Mar 16.
Article in English | MEDLINE | ID: mdl-16541068

ABSTRACT

Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov's prediction of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics. However, the observation of Efimov quantum states has remained an elusive goal. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss when the strength of the two-body interaction is varied. We also detect a minimum in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems. While Feshbach resonances have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter to the world of few-body quantum phenomena.

3.
Phys Rev Lett ; 94(12): 123201, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15903917

ABSTRACT

We observe magnetically tuned collision resonances for ultracold Cs2 molecules stored in a CO2-laser trap. By magnetically levitating the molecules against gravity, we precisely measure their magnetic moment. We find an avoided level crossing which allows us to transfer the molecules into another state. In the new state, two Feshbach-like collision resonances show up as strong inelastic loss features. We interpret these resonances as being induced by Cs4 bound states near the molecular scattering continuum. The tunability of the interactions between molecules opens up novel applications such as controlled chemical reactions and synthesis of ultracold complex molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...