Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Microanal ; 29(6): 1879-1888, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37947075

ABSTRACT

Extended defects, like threading dislocations, are detrimental to the performance of optoelectronic devices. In the scanning electron microscope, dislocations are traditionally imaged using diodes to monitor changes in backscattered electron intensity as the electron beam is scanned over the sample, with the sample positioned so the electron beam is at, or close to the Bragg angle for a crystal plane/planes. Here, we use a pixelated detector instead of single diodes, specifically an electron backscatter diffraction (EBSD) detector. We present postprocessing techniques to extract images of dislocations and surface steps, for a nitride thin film, from measurements of backscattered electron intensities and intensity distributions in unprocessed EBSD patterns. In virtual diode (VD) imaging, the backscattered electron intensity is monitored for a selected segment of the unprocessed EBSD patterns. In center of mass (COM) imaging, the position of the center of the backscattered electron intensity distribution is monitored. Additionally, both methods can be combined (VDCOM). Using both VD and VDCOM, images of only threading dislocations, or dislocations and surface steps can be produced, with VDCOM images exhibiting better signal-to-noise. The applicability of VDCOM imaging is demonstrated across a range of nitride semiconductor thin films, with varying surface step and dislocation densities.

2.
Opt Express ; 28(3): 3619-3635, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32122027

ABSTRACT

Light emitting diodes (LEDs) in the deep ultra-violet (DUV) offer new perspectives for multiple applications ranging from 3D printing to sterilization. However, insufficient light extraction severely limits their efficiency. Nanostructured sapphire substrates in aluminum nitride based LED devices have recently shown to improve crystal growth properties, while their impact on light extraction has not been fully verified. We present a model for understanding the impact of nanostructures on the light extraction capability of DUV-LEDs. The model assumes an isotropic light source in the semiconductor layer stack and combines rigorously computed scattering matrices with a multilayer solver. We find that the optical benefit of using a nanopatterned as opposed to a planar sapphire substrate to be negligible, if parasitic absorption in the p-side of the LED is dominant. If losses in the p-side are reduced to 20%, then for a wavelength of 265 nm an increase of light extraction efficiency from 7.8% to 25.0% is possible due to nanostructuring. We introduce a concept using a diffuse ('Lambertian') reflector as p-contact, further increasing the light extraction efficiency to 34.2%. The results underline that transparent p-sides and reflective p-contacts in DUV-LEDs are indispensable for enhanced light extraction regardless of the interface texture between semiconductor and sapphire substrate. The optical design guidelines presented in this study will accelerate the development of high-efficiency DUV-LEDs. The model can be extended to other multilayer opto-electronic nanostructured devices such as photovoltaics or photodetectors.

3.
Microsyst Nanoeng ; 5: 52, 2019.
Article in English | MEDLINE | ID: mdl-31814992

ABSTRACT

Nano-engineering III-nitride semiconductors offers a route to further control the optoelectronic properties, enabling novel functionalities and applications. Although a variety of lithography techniques are currently employed to nano-engineer these materials, the scalability and cost of the fabrication process can be an obstacle for large-scale manufacturing. In this paper, we report on the use of a fast, robust and flexible emerging patterning technique called Displacement Talbot lithography (DTL), to successfully nano-engineer III-nitride materials. DTL, along with its novel and unique combination with a lateral planar displacement (D2TL), allow the fabrication of a variety of periodic nanopatterns with a broad range of filling factors such as nanoholes, nanodots, nanorings and nanolines; all these features being achievable from one single mask. To illustrate the enormous possibilities opened by DTL/D2TL, dielectric and metal masks with a number of nanopatterns have been generated, allowing for the selective area growth of InGaN/GaN core-shell nanorods, the top-down plasma etching of III-nitride nanostructures, the top-down sublimation of GaN nanostructures, the hybrid top-down/bottom-up growth of AlN nanorods and GaN nanotubes, and the fabrication of nanopatterned sapphire substrates for AlN growth. Compared with their planar counterparts, these 3D nanostructures enable the reduction or filtering of structural defects and/or the enhancement of the light extraction, therefore improving the efficiency of the final device. These results, achieved on a wafer scale via DTL and upscalable to larger surfaces, have the potential to unlock the manufacturing of nano-engineered III-nitride materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...