Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 54(4): 2143-2151, 2020 02 18.
Article in English | MEDLINE | ID: mdl-31898894

ABSTRACT

Whole-house emission rates and indoor loss coefficients of formaldehyde and other volatile organic compounds (VOCs) were determined from continuous measurements inside a net-zero energy home at two different air change rates (ACHs). By turning the mechanical ventilation on and off, it was demonstrated that formaldehyde concentrations reach a steady state much more quickly than other VOCs, consistent with a significant indoor loss rate attributed to surface uptake. The first order loss coefficient for formaldehyde was 0.47 ± 0.06 h-1 at 0.08 h-1 ACH and 0.88 ± 0.22 h-1 at 0.62 h-1 ACH. Loss rates for other VOCs measured were not discernible, with the exception of hexanoic acid. A factor of 5.5 increase in the ACH increased the whole-house emission rates of VOCs but by varying degrees (factors of 1.1 to 3.8), with formaldehyde displaying no significant change. The formaldehyde area-specific emission rate (86 ± 8 µg m-2 h-1) was insensitive to changes in the ACH because its large indoor loss rate muted the impact of ventilation on indoor air concentrations. These results demonstrate that formaldehyde loss rates must be taken into account to correctly estimate whole-house emission rates and that ventilation will not be as effective at reducing indoor formaldehyde concentrations as it is for other VOCs.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Environmental Monitoring , Formaldehyde , Ventilation
2.
Sci Rep ; 9(1): 9222, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31239470

ABSTRACT

A large retreat of sea-ice in the 'stormy' Atlantic Sector of the Arctic Ocean has become evident through a series of record minima for the winter maximum sea-ice extent since 2015. Results from the Norwegian young sea ICE (N-ICE2015) expedition, a five-month-long (Jan-Jun) drifting ice station in first and second year pack-ice north of Svalbard, showcase how sea-ice in this region is frequently affected by passing winter storms. Here we synthesise the interdisciplinary N-ICE2015 dataset, including independent observations of the atmosphere, snow, sea-ice, ocean, and ecosystem. We build upon recent results and illustrate the different mechanisms through which winter storms impact the coupled Arctic sea-ice system. These short-lived and episodic synoptic-scale events transport pulses of heat and moisture into the Arctic, which temporarily reduce radiative cooling and henceforth ice growth. Cumulative snowfall from each sequential storm deepens the snow pack and insulates the sea-ice, further inhibiting ice growth throughout the remaining winter season. Strong winds fracture the ice cover, enhance ocean-ice-atmosphere heat fluxes, and make the ice more susceptible to lateral melt. In conclusion, the legacy of Arctic winter storms for sea-ice and the ice-associated ecosystem in the Atlantic Sector lasts far beyond their short lifespan.

3.
Nat Commun ; 6: 10117, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26657324

ABSTRACT

Infrared radiative processes are implicated in Arctic warming and sea-ice decline. The infrared cloud radiative effect (CRE) at the surface is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. Here we show how temperature and humidity control CRE through competing influences between the mid- and far-infrared. At constant relative humidity, CRE does not decrease with increasing temperature/absolute humidity as expected, but rather is found to be approximately constant for temperatures characteristic of the Arctic. This stability is disrupted if relative humidity varies. Our findings explain observed seasonal and regional variability in Arctic CRE of order 10 W m(-2). With the physical properties of Arctic clouds held constant, we calculate recent increases in CRE of 1-5 W m(-2) in autumn and winter, which are projected to reach 5-15 W m(-2) by 2050, implying increased sensitivity of the surface to clouds.

4.
Opt Express ; 19(7): 5930-41, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21451618

ABSTRACT

Spectra measured by remote-sensing Fourier transform infrared spectrometers are often calibrated using two calibration sources. At wavenumbers where the absorption coefficient is large, air within the optical path of the instrument can absorb most calibration-source signal, resulting in extreme errors. In this paper, a criterion in terms of the instrument responsivity is used to identify such wavenumbers within the instrument bandwidth of two remote-sensing Fourier transform infrared spectrometers. Wavenumbers identified by the criterion are found to be correlated with strong absorption line-centers of water vapor. Advantages of using a responsivity-based criterion are demonstrated.


Subject(s)
Algorithms , Spectroscopy, Fourier Transform Infrared/instrumentation , Spectroscopy, Fourier Transform Infrared/standards , Calibration , Equipment Failure Analysis/methods , Internationality
5.
Opt Express ; 19(6): 5451-63, 2011 Mar 14.
Article in English | MEDLINE | ID: mdl-21445184

ABSTRACT

An analytical expression for the variance of the radiance measured by Fourier-transform infrared (FTIR) emission spectrometers exists only in the limit of low noise. Outside this limit, the variance needs to be calculated numerically. In addition, a criterion for low noise is needed to identify properly calibrated radiances and optimize the instrument bandwidth. In this work, the variance and the magnitude of a noise-dependent spectral bias are calculated as a function of the system responsivity (r) and the noise level in its estimate (σr). The criterion σr/r<0.3, applied to downwelling and upwelling FTIR emission spectra, shows that the instrument bandwidth is specified properly for one instrument but needs to be restricted for another.

6.
Appl Opt ; 49(3): 520-8, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20090820

ABSTRACT

The Interferometric Monitor for Greenhouse Gases (IMG) operated aboard the polar-orbiting Advanced Earth Observing Satellite from October 1996 through June 1997. The IMG measured upwelling infrared radiance at fine spectral resolution. This paper identifies previously undocumented issues with IMG interferograms and describes procedures for correcting the majority of the affected data. In particular, single-sided interferograms should be used to avoid large noise bursts, and phase ambiguities must be resolved in uncalibrated spectra before radiometric calibration. The corrections are essential for studies that require accurately calibrated radiance spectra, including those that track atmospheric changes globally on decadal time scales.

7.
Appl Opt ; 48(7): 1358-65, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19252637

ABSTRACT

Atmospheric emission in the nu(2) band of water vapor by the foreign-broadened continuum (1300-2000 cm(-1)) is important for retrievals of upper tropospheric water vapor. Previous work reported continuum coefficients retrieved from two downwelling emission measurements made with the Polar Atmospheric Emitted Radiance Interferometer (PAERI) at temperatures characteristic of the upper troposphere (below -25 degrees C) at Dome C, Antarctica. These results are improved upon here using 19 different measurements. Improvements have been made to the PAERI radiance calibration, the radiance simulations, and the error analysis. Compared to the Mlawer, Tobin, Clough, Kneizys, Davies continuum, the retrieved continuum is found to be 20% to 50% lower from 1350 to 1490 cm(-1) and 0% to 20% higher from 1850 to 1980 cm(-1).


Subject(s)
Atmosphere/chemistry , Interferometry , Steam/analysis , Temperature , Calibration , Computer Simulation , Models, Theoretical , Radiation , Uncertainty
8.
Appl Opt ; 45(18): 4366-82, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-16778946

ABSTRACT

The foreign-broadened continuum of water vapor in the nu2 band (5-7.7 microm, 1300-2000 cm(-1)) is important for satellite-based retrievals of water vapor in the upper troposphere, where temperatures are below -25 degrees C. Continuum coefficients have previously been measured mostly at or above +23 degrees C. We present continuum coefficients in the nu(2) band retrieved from measurements made in Antarctica at temperatures near -30 degrees C: atmospheric transmission at South Pole Station and atmospheric emission at Dome C. The continuum coefficients derived from these measurements are generally in agreement with the widely used Mlawer, Tobin-Clough, Kneizys, Davies continuum. Differences are at most 30%, corresponding to a 6% relative error in retrieved upper-tropospheric humidity.

SELECTION OF CITATIONS
SEARCH DETAIL
...