Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 64: 12-19, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28302525

ABSTRACT

The aim of the mechanical pretreatment in case of anaerobic digestion of biowaste is to produce a substrate without impurities. To facilitate a failure free operation of the anaerobic digestion process even small impurities like stones or sand should be separated. As a result of an insufficient pretreatment or impurities separation, plant malfunctions, increased equipment wear or pipe clogging are reported. Apart from grit chambers or pulper systems, a hydrocyclone is a cost-efficient and space-saving option to remove impurities. The aim of this work was to investigate the efficiency of hydrocyclones for the separation of impurities. Two hydrocyclones at two different plants were investigated regarding their capability to separate the small inert impurities from pretreated source separated biowaste. In plant A, the hydrocyclone is part of the digester system. In plant B, the hydrocyclone is part of the biowaste pretreatment line (after milling and sieving the biowaste) before digestion. Separation rates of inert impurities such as stones, glass and sand were determined as well as the composition of the concentrated solids separated by the hydrocyclone. Due to the heterogeneity of the biowaste the impurity separation rates showed variations, therefore the following mean results were obtained in average: the investigated hydrocyclones of plant B, part of the biowaste treatment, separated more than 80% of the inert impurities in the waste stream before anaerobic digestion. These impurities had a size range of 0.5-4mm. The hydrocyclone integrated in the digester system of plant A showed separation rates up to 80% only in the size range of 2-4mm.


Subject(s)
Refuse Disposal , Bioreactors
2.
Waste Manag ; 52: 96-103, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27055366

ABSTRACT

Although the mechanical treatment of source separated organic waste typically includes processing steps to remove impurities like plastic bags, smaller particles like glass, stones or sand are often not sufficiently removed. These particles lead to plant malfunctions, increased equipment abrasion and accumulation in the digester. It is possible to remove these small impurities before or during the fermentation process but this requires additional equipment at the waste treatment facilities. For pretreated biowaste with fairly low concentrations of impurities and small particle sizes no appropriate method was found in literature to determine these particles. Therefore various approaches to develop an appropriate method were tested and finally one method was selected. Sample mass calculation showed that for the determination of impurities >2mm a sample mass of about 6kg is required to receive statistically sound result. Firstly an elutriation step is used to concentrate the impurities in a sinking fraction, still containing some organic material. The elutriated material is then dried. After drying the elutriated material, impurities can be fairly easily sorted manually. The elutriation process is applicable for the determination of impurities >1mm. Due to the difficult manual sorting of particles <2mm and the reduced sample mass required for the determination of particles <2mm, these particles are determined by a different procedure: A sample mass of about 1kg is dried and combusted in a muffle furnace. The remaining ashes are sieved from 2 to 0.06mm. Particles <0.06mm were not considered as impurities. The data regarding the impurities content and particle size distribution in food- and biowaste are required for assessing separation options as well as the behavior of stones or sand in the digester. This allows describing the quality of the pretreated biowaste. Furthermore the need to adopt or improve the existing pretreatment can be identified and the impact to the fermentation process (impurities accumulated in the digester, etc.) can be evaluated.


Subject(s)
Biodegradation, Environmental , Refuse Disposal/methods , Waste Products , Fermentation
3.
Environ Microbiol ; 8(11): 1960-74, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17014495

ABSTRACT

Malodorous emissions and potentially pathogenic microorganisms which develop during domestic organic waste collection are not only a nuisance but may also pose health risks. The aim of the present study was to determine whether the presence of specific microorganisms in biowastes is directly related to the composition of the emitted volatile organic compounds (VOCs). The succession of microbial communities during 16 days of storage in organic waste collection bins was studied by denaturing gradient gel electrophoresis (DGGE) of amplified 16S ribosomal DNA in parallel with a classical cultivation and isolation approach. Approximately 60 different bacterial species and 20 different fungal species were isolated. Additionally, some bacterial species were identified through sequencing of excised DGGE bands. Proton transfer reaction mass spectrometry (PTR-MS) was used to detect VOCs over the sampling periods, and co-inertia analyses of VOC concentrations with DGGE band intensities were conducted. Positive correlations, indicating production of the respective VOC or enhancement of microbial growth, and negative correlations, indicating the use of, or microbial inhibition by the respective compound, were found for the different VOCs. Measurement of the VOC emission pattern from a pure culture of Lactococcus lactis confirmed the positive correlations for the protonated masses 89 (tentatively identified as butyric acid), 63 (tentatively identified as dimethylsulfide), 69 (likely isoprene) and 73 (likely butanone).


Subject(s)
Bacteria/metabolism , Environmental Microbiology , Fungi/metabolism , Organic Chemicals/analysis , Waste Products , Bacteria/growth & development , Bacteria/isolation & purification , Biodegradation, Environmental , Electrophoresis/methods , Fungi/growth & development , Fungi/isolation & purification , Genes, rRNA , Hydrogen-Ion Concentration , RNA, Ribosomal, 16S/genetics , Temperature , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...