Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 13(5): e0196387, 2018.
Article in English | MEDLINE | ID: mdl-29738536

ABSTRACT

Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in the cholesterol biosynthesis pathway (CBP), and are used for the prevention of cardiovascular disease. The anti-inflammatory effects of statins may also provide therapeutic benefits and have led to their use in clinical trials for preeclampsia, a pregnancy-associated inflammatory condition, despite their current classification as category X (i.e. contraindicated during pregnancy). In the developing neocortex, products of the CBP play essential roles in proliferation and differentiation of neural stem-progenitor cells (NSPCs). To understand how statins could impact the developing brain, we studied effects of pravastatin and simvastatin on primary embryonic NSPC survival, proliferation, global transcription, and cell fate in vitro. We found that statins dose dependently decrease NSPC expansion by promoting cell death and autophagy of NSPCs progressing through the G1 phase of the cell cycle. Genome-wide transcriptome analysis demonstrates an increase in expression of CBP genes following pravastatin treatment, through activation of the SREBP2 transcription factor. Co-treatment with farnesyl pyrophosphate (FPP), a CBP metabolite downstream of HMG-CoA reductase, reduces SREBP2 activation and pravastatin-induced PARP cleavage. Finally, pravastatin and simvastatin differentially alter NSPC cell fate and mRNA expression during differentiation, through a non-CBP dependent pathway.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Animals , Autophagy/drug effects , Biosynthetic Pathways/drug effects , Cell Cycle/drug effects , Cell Death/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cholesterol/biosynthesis , Female , Male , Mice , Mouse Embryonic Stem Cells/metabolism , Neural Stem Cells/metabolism , Polyisoprenyl Phosphates/pharmacology , Pravastatin/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sesquiterpenes/pharmacology , Simvastatin/pharmacology , Sterol Regulatory Element Binding Protein 2/genetics , Transcriptome/drug effects
2.
Mol Cell Endocrinol ; 471: 42-50, 2018 08 15.
Article in English | MEDLINE | ID: mdl-28554804

ABSTRACT

Fetal exposure to synthetic glucocorticoids reprograms distinct neural circuits in the developing brain, often in a sex-specific manner, via mechanisms that remain poorly understood. To reveal whether such reprogramming is associated with select molecular signatures, we characterized the transcriptome of primary, embryonic mouse cerebral cortical and hypothalamic neural progenitor/stem cells derived from individual male and female embryos exposed to the synthetic glucocorticoid, dexamethasone. Gene expression profiling by RNA-Seq identified differential expression of common and unique genes based upon brain region, sex, and/or dexamethasone exposure. These gene expression datasets provide a unique resource that will inform future studies examining the molecular mechanisms responsible for region- and sex-specific reprogramming of the fetal brain brought about by in utero exposure to excess glucocorticoids.


Subject(s)
Cerebral Cortex/embryology , Dexamethasone/pharmacology , Embryo, Mammalian/cytology , Hypothalamus/embryology , Neural Stem Cells/metabolism , Sex Characteristics , Transcriptome/genetics , Animals , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental/drug effects , Male , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...