Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 185(25): 4703-4716.e16, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36455558

ABSTRACT

We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.


Subject(s)
Jews , White People , Humans , Jews/genetics , Genetics, Population , Genome, Human
2.
Bioinformatics ; 37(24): 4744-4755, 2021 12 11.
Article in English | MEDLINE | ID: mdl-34270685

ABSTRACT

MOTIVATION: The rise in the number of genotyped ancient individuals provides an opportunity to estimate population admixture models for many populations. However, in models describing modern populations as mixtures of ancient ones, it is typically difficult to estimate the model mixing coefficients and to evaluate its fit to the data. RESULTS: We present LINADMIX, designed to tackle this problem by solving a constrained linear model when both the ancient and the modern genotypes are represented in a low-dimensional space. LINADMIX estimates the mixing coefficients and their standard errors, and computes a P-value for testing the model fit to the data. We quantified the performance of LINADMIX using an extensive set of simulated studies. We show that LINADMIX can accurately estimate admixture coefficients, and is robust to factors such as population size, genetic drift, proportion of missing data and various types of model misspecification. AVAILABILITY AND IMPLEMENTATION: LINADMIX is available as a python code at https://github.com/swidler/linadmix. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Humans , Genotype
3.
Cell ; 181(5): 1146-1157.e11, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32470400

ABSTRACT

We report genome-wide DNA data for 73 individuals from five archaeological sites across the Bronze and Iron Ages Southern Levant. These individuals, who share the "Canaanite" material culture, can be modeled as descending from two sources: (1) earlier local Neolithic populations and (2) populations related to the Chalcolithic Zagros or the Bronze Age Caucasus. The non-local contribution increased over time, as evinced by three outliers who can be modeled as descendants of recent migrants. We show evidence that different "Canaanite" groups genetically resemble each other more than other populations. We find that Levant-related modern populations typically have substantial ancestry coming from populations related to the Chalcolithic Zagros and the Bronze Age Southern Levant. These groups also harbor ancestry from sources we cannot fully model with the available data, highlighting the critical role of post-Bronze-Age migrations into the region over the past 3,000 years.


Subject(s)
DNA, Ancient/analysis , Ethnicity/genetics , Gene Flow/genetics , Archaeology/methods , DNA, Mitochondrial/genetics , Ethnicity/history , Gene Flow/physiology , Genetic Variation/genetics , Genetics, Population/methods , Genome, Human/genetics , Genomics/methods , Haplotypes , History, Ancient , Human Migration/history , Humans , Mediterranean Region , Middle East , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...