Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38645152

ABSTRACT

With the growing number of single-cell analysis tools, benchmarks are increasingly important to guide analysis and method development. However, a lack of standardisation and extensibility in current benchmarks limits their usability, longevity, and relevance to the community. We present Open Problems, a living, extensible, community-guided benchmarking platform including 10 current single-cell tasks that we envision will raise standards for the selection, evaluation, and development of methods in single-cell analysis.

2.
Bioorg Med Chem ; 26(8): 1470-1480, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29449125

ABSTRACT

The increased tolerance of biofilms against disinfectants and antibiotics has stimulated research into new methods of biofilm prevention and eradication. In our previous work, we have identified the 5-aryl-2-aminoimidazole core as a scaffold that demonstrates preventive activity against biofilm formation of a broad range of bacterial and fungal species. Inspired by the dimeric nature of natural 2-aminoimidazoles of the oroidin family, we investigated the potential of dimers of our decorated 5-aryl-2-aminoimidazoles as biofilm inhibitors. A synthetic approach towards 2-aminoimidazole dimers linked by an alkyl chain was developed and a total of 48 dimers were synthesized. The linkers were introduced at two different positions, the N1-position or the N2-position, and the linker length and the substitution of the 5-phenyl ring (H, F, Cl, Br) were varied. Although, no clear correlation between linker length and biofilm inhibition was observed, a strong increase in anti-biofilm activity for almost all N1,N1'-linked dimers was obtained, compared to the respective monomers against Salmonella Typhimurium, Escherichia coli and Staphylococcus aureus. The N2,N2'-linked dimers, having a H- or F-substitution, were also found to show a strong increase in anti-biofilm activity compared to the respective monomers against these three bacterial species and against Pseudomonas aeruginosa. In addition, the obtained growth measurements suggest a broad concentration range with specific biofilm inhibition and no effect on the planktonic growth against Salmonella Typhimurium and Pseudomonas aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biological Products/pharmacology , Imidazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Dimerization , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Imidazoles/chemical synthesis , Imidazoles/chemistry , Microbial Sensitivity Tests , Microwaves , Molecular Structure , Pseudomonas aeruginosa/drug effects , Salmonella typhimurium/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship
3.
Antimicrob Agents Chemother ; 60(11): 6483-6497, 2016 11.
Article in English | MEDLINE | ID: mdl-27550355

ABSTRACT

We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the antibiofilm activity spectrum and toxicity.


Subject(s)
Anti-Infective Agents/pharmacology , Biofilms/drug effects , Imidazoles/pharmacology , Anti-Infective Agents/chemical synthesis , Biofilms/growth & development , Candida albicans/drug effects , Candida albicans/growth & development , Escherichia coli/drug effects , Escherichia coli/growth & development , Imidazoles/chemical synthesis , Microbial Sensitivity Tests , Microbial Viability/drug effects , Molecular Structure , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Salmonella typhimurium/drug effects , Salmonella typhimurium/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/growth & development , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...