Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 19999, 2024 08 28.
Article in English | MEDLINE | ID: mdl-39198533

ABSTRACT

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) plays a vital role in DNA damage repair and lymphocyte function, presenting a significant target in cancer and immune diseases. Current DNA-PKcs inhibitors are undergoing Phase I/II trials as adjuncts to radiotherapy and chemotherapy in cancer. Nevertheless, clinical utility is limited by suboptimal bioavailability. This study introduces DNA-PKcs inhibitors designed to enhance bioavailability. We demonstrate that a novel DNA-PKcs inhibitor, DA-143, surpasses NU7441 in aqueous solubility as well as other available inhibitors. In addition, DA-143 displayed an improvement in DNA-PKcs inhibition relative to NU7441 achieving an IC50 of 2.5 nM. Consistent with current inhibitors, inhibition of DNA-PKcs by DA-143 resulted in increased tumor cell sensitivity to DNA-damage from chemotherapy and inhibition of human T cell function. The improved solubility of DA-143 is critical for enhanced efficacy at reduced doses and facilitates more effective evaluation of DNA-PKcs inhibition in both preclinical and clinical development.


Subject(s)
Chromones , DNA-Activated Protein Kinase , Morpholines , Protein Kinase Inhibitors , Solubility , Humans , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , Morpholines/chemistry , Morpholines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Chromones/chemistry , Chromones/pharmacology , Cell Line, Tumor , DNA Damage/drug effects , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
2.
Immunol Cell Biol ; 101(7): 663-671, 2023 08.
Article in English | MEDLINE | ID: mdl-37149747

ABSTRACT

Modulation of T cell activity is an effective strategy for the treatment of autoimmune diseases, immune-related disorders and cancer. This highlights a critical need for the identification of proteins that regulate T cell function. The kinase DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is emerging as a potent regulator of the immune system, spurring interest in its use as a therapeutic target. In murine models of immune-related diseases including asthma and rheumatoid arthritis, treatment with small-molecule DNA-PKcs inhibitors decreased the disease severity. Additionally, DNA-PKcs inhibitors reduced T cell-mediated graft rejection in a murine allogenic skin graft model. These in vivo studies suggest the use of DNA-PKcs inhibitors as immunotherapy for autoimmune and T cell-mediated disorders. In this study, we sought to characterize further the effects of DNA-PKcs inhibitors on T cells to better understand their clinical potential. We determined that inhibition of DNA-PKcs using inhibitor NU7441 and the inhibitors currently in clinical trials for cancer therapy, M3184 and AZD7648, abrogated the activation of murine and human CD4+ and CD8+ T cells as evidenced by the reduced expression of the activation markers CD69 and CD25. Furthermore, inhibition of DNA-PKcs impeded metabolic pathways and the proliferation of activated T cells. This reduced the ability of OTI-CD8+ T cells to kill cancer cells and the expression of IFNγ and cytotoxic genes. These results highlight a critical role for DNA-PKcs in T cells and validate future studies using DNA-PKcs inhibitors as immune modulation therapy for the treatment of immune-related diseases.


Subject(s)
Antineoplastic Agents , DNA-Activated Protein Kinase , Humans , Animals , Mice , DNA-Activated Protein Kinase/genetics , DNA-Activated Protein Kinase/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/metabolism , DNA
3.
J Biol Chem ; 297(4): 101209, 2021 10.
Article in English | MEDLINE | ID: mdl-34562454

ABSTRACT

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is known primarily for its function in DNA double-stranded break repair and nonhomologous end joining (NHEJ). However, DNA-PKcs also has a critical yet undefined role in immunity impacting both myeloid and lymphoid cell lineages spurring interest in targeting DNA-PKcs for therapeutic strategies in immune-related diseases. To gain insight into the function of DNA-PKcs within immune cells, we performed a quantitative phosphoproteomic screen in T cells to identify phosphorylation targets of DNA-PKcs. Our results indicate that DNA-PKcs phosphorylates the transcription factor Egr1 (early growth response protein 1) at serine 301. Expression of Egr1 is induced early upon T cell activation and dictates T cell response by modulating expression of cytokines and key costimulatory molecules such as IL (interleukin) 2, IL6, IFNγ, and NFκB. Inhibition of DNA-PKcs by treatment with a DNA-PKcs specific inhibitor NU7441 or shRNA knockdown increased proteasomal degradation of Egr1. Mutation of serine 301 to alanine via CRISPR-Cas9 reduced EGR1 protein expression and decreased Egr1-dependent transcription of IL2 in activated T cells. Our findings identify DNA-PKcs as a critical intermediary link between T cell activation and T cell fate and a novel phosphosite involved in regulating Egr1 activity.


Subject(s)
DNA-Activated Protein Kinase/immunology , DNA-Binding Proteins/immunology , Early Growth Response Protein 1/immunology , Lymphocyte Activation , T-Lymphocytes/immunology , Animals , Cytokines/genetics , Cytokines/immunology , DNA-Activated Protein Kinase/genetics , DNA-Binding Proteins/genetics , Early Growth Response Protein 1/genetics , Humans , Jurkat Cells , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Mutation, Missense , Protein Stability , Transcription, Genetic/immunology
4.
Transplantation ; 105(3): 540-549, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32890138

ABSTRACT

BACKGROUND: Organ transplantation is life-saving and continued investigations into immunologic mechanisms that drive organ rejection are needed to improve immunosuppression therapies and prevent graft failure. DNA-dependent protein kinase catalytic subunit, DNA dependent-protein kinase catalytic subunit (DNA-PKcs), is a critical component of both the cellular and humoral immune responses. In this study, we investigate the contribution of DNA-PKcs to allogeneic skin graft rejection to potentially highlight a novel strategy for inhibiting transplant rejection. METHODS: Fully MHC mismatched murine allogeneic skin graft studies were performed by transplanting skin from BalbC mice to C57bl6 mice and treating with either vehicle or the DNA-PKcs inhibitor NU7441. Graft rejection, cytokine production, immune cell infiltration, and donor-specific antibody formation were analyzed. RESULTS: DNA-PKcs inhibition significantly reduced necrosis and extended graft survival compared with controls (mean survival 14 d versus 9 d, respectively). Inhibition reduced the production of the cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ and the infiltration of CD3+ lymphocytes into grafts. Furthermore, DNA-PKcs inhibition reduced the number of CD19+ B cells and CD19+ CD138+ plasma cells coinciding with a significant reduction in donor-specific antibodies. At a molecular level, we determined that the immunosuppressive effects of DNA-PKcs inhibition were mediated, in part, via inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling through reduced expression of the p65 subunit. CONCLUSIONS: Our data confirm that DNA-PKcs contributes to allogeneic graft rejection and highlight a novel immunologic function for DNA-PKcs in the regulation of nuclear factor kappa-light-chain-enhancer of activated B cells and concomitant cytokine production.


Subject(s)
Chromones/pharmacology , DNA-Activated Protein Kinase/genetics , DNA-Binding Proteins/genetics , Graft Rejection/prevention & control , Graft Survival/genetics , Morpholines/pharmacology , Skin Transplantation , Animals , DNA-Activated Protein Kinase/antagonists & inhibitors , DNA-Activated Protein Kinase/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Disease Models, Animal , Flow Cytometry , Graft Rejection/genetics , Graft Rejection/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
5.
PeerJ ; 8: e9442, 2020.
Article in English | MEDLINE | ID: mdl-32821531

ABSTRACT

The CRISPR system has become heavily utilized in biomedical research as a tool for genomic editing as well as for site-specific chromosomal localization of specific proteins. For example, we developed a CRISPR-based methodology for enriching a specific genomic locus of interest for proteomic analysis in Saccharomyces cerevisiae, which utilized a guide RNA-targeted, catalytically dead Cas9 (dCas9) as an affinity reagent. To more comprehensively evaluate the genomic specificity of using dCas9 as a site-specific tool for chromosomal studies, we performed dCas9-mediated locus enrichment followed by next-generation sequencing on a genome-wide scale. As a test locus, we used the ARS305 origin of replication on chromosome III in S. cerevisiae. We found that enrichment of this site is highly specific, with virtually no off-target enrichment of unique genomic sequences. The high specificity of genomic localization and enrichment suggests that dCas9-mediated technologies have promising potential for site-specific chromosomal studies in organisms with relatively small genomes such as yeasts.

7.
Epigenetics ; 9(9): 1207-11, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25147920

ABSTRACT

Any given chromosomal activity (e.g., transcription) is governed predominantly by the local epiproteome. However, defining local epiproteomes has been limited by a lack of effective technologies to isolate discrete sections of chromatin and to identify with precision specific proteins and histone posttranslational modifications (PTMs). We report the use of the Cas9 and guide RNA (gRNA) components of the CRISPR system for gRNA-directed purification of a discrete section of chromatin. Quantitative mass spectrometry provides for unambiguous identification of proteins and histone PTMs specifically associated with the enriched chromatin. This CRISPR-based Chromatin Affinity Purification with Mass Spectrometry (CRISPR-ChAP-MS) approach revealed changes in the local epiproteome of a promoter during activation of transcription. CRISPR-ChAP-MS thus has broad applications for discovering molecular components and dynamic regulation of any in vivo activity at a given chromosomal location.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Genetic Loci , Histones/metabolism , Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromatin/genetics , Chromatin/metabolism , Mass Spectrometry , Protein Processing, Post-Translational , Proteome/genetics , RNA, Guide, Kinetoplastida/metabolism , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL