Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38893921

ABSTRACT

When dealing with processes involving the compaction of bulk materials, very often the quality of the product is determined based on density measurements. Methods used in the industry do not produce compacted materials with high degrees of homogeneity. As a result, the quality of the resulting product, interpreted as its density, varies over the cross-section of the product. In this article, the authors present the results of a numerical study involving the analysis of the density distribution of compacted dry ice during the reciprocating process. The Drucker-Prager/cap model was used in this study, which allowed the change in mechanical properties of the compacted material to be taken into account during the simulation of the process. The diameter, height and density of the cylindrical specimens used in the numerical tests were taken as the variable parameters. Thus, as a result of the testing, the authors could formulate conclusions relating to their impact on the homogeneity of the material.

2.
Materials (Basel) ; 16(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37297075

ABSTRACT

This paper presents experimental research on cutting a single stalk of triticale straw for the production of biofuel in the process of its compaction using the piston technique. In the first stage of the experimental study of cutting single triticale straws, the variable parameters were the moisture contents of the stem equal to 10% and 40%, the offset between the blade and the counter-blade g, and the linear velocity of the knife blade V. The blade angle and rake angle were equal to α = 0° and ß = 0°. In the second stage, the variables, including the blade angle values α = 0°, 15°, 30°, and 45° and the rake angle values ß = 5°, 15°, and 30°, were introduced. Taking into account the analysis of the distribution of forces on the knife edge leading to the determination of the force quotients Fc″/Fc and Fw/Fc, and on the basis of the optimization performed and the adopted optimization criteria, the optimal knife edge angle α can be determined (at values g = 0.1 mm and V = 8 mm/s) at α ≅ 0° and the angle of attack ß within the range of 5-26°. What the value will be in this range depends on the value of the weight adopted in the optimization. The choice of their values may be decided by the constructor of the cutting device.

3.
Materials (Basel) ; 16(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37109872

ABSTRACT

This work presents an experimental study of cutting corn stalks for thermal energy generation. The study was carried out for the values of blade angle in the range of α = 30-80°, distance between the blade and the counter-blade g = 0.1, 0.2, 0.3 mm and the velocity of the blade V = 1, 4, 8 mm/s. The measured results were used to determine shear stresses and cutting energy. The ANOVA variance analysis tool was used to determine the interactions between the initial process variables and the responses. Furthermore, the blade load-state analysis was carried out, together with determining the knife blade strength characteristic, based on the determination criteria for the strength of the cutting tool. Therefore, the force ratio Fcc/Tx was determined as the determinant of strength, and its variance characteristic in the function of the blade angle, α, was used in the performed optimization. The optimization criteria entailed the determination of such values of the blade angle, α, for which the cutting force value, Fcc, and the coefficient of knife blade strength approached the minimum value. Hence, the optimized value of the blade angle, α, within the range 40-60° was determined, depending on the assumed weight parameters for the above-mentioned criteria.

4.
Materials (Basel) ; 15(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36431420

ABSTRACT

How to reduce consumption of energy in manufacturing has become a topical issue nowadays. Certain manufacturing processes are known for being highly energy-intensive and compression of materials belongs to this group. This article presents the simulation of the process of compression of dry ice snow with the use of the Mohr-Coulomb model. Two simulation variants were considered in this research. In the first one, constant input parameters were used and in the second one, the input parameters were variable, depending on the changing density of the compressed material. The experimental data were compared with the predicted values to find that the model using constant input parameters was inferior as regards to the goodness of fit. On the other hand, the model with variable input parameters was less accurate in predicting the maximum compression force acting in the process. The last section of this article deals with simulations performed with the Drucker-Prager Cap and modified Cam-Clay models. Finally, it was concluded that the Mohr-Coulomb model yields a more accurate representation of the compression process while requiring less information on the variation of the material parameters.

5.
Materials (Basel) ; 15(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36431727

ABSTRACT

This article presents the outcome of research on modelling the process of the extrusion of crystalline dry ice. The purpose of this process is to densify the material and obtain pellets of several millimeters in diameter. This reduces the sublimation rate in ambient conditions of the material whose temperature in a solid state is 195 K. A lower sublimation rate means a reduction of the loss of product in its final applications, which include refrigeration and reduction of atmospheric emissions of gaseous CO2. A ram-type extruder was considered in this analysis, in which dry ice was extruded through a single-hole die of varying geometry. The article presents the results of numerical analyses of the extrusion process, using a simulation method based on the Smoothed Particle Hydrodynamics (SPH) approach. The results from simulations were verified by the experimental data in terms of the maximum force required to complete the process, in order to assess the applicability of the proposed method in further research on dry ice compression.

6.
Materials (Basel) ; 15(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36013907

ABSTRACT

This article presents the results of a numerical experimental study on the simulation of the dry ice compaction process. The first part of the article presents a description of the material used, material models and the methodology of experimental research. In the second part, numerical and experimental study results are presented. For the purpose of comparison, a parametric method based on the residual sum of squares was used. The application of the indicated method fills the gap in the available literature as the authors are not aware of any existing data from previous studies on the method of comparing the results of numerical tests in terms of the obtained results and the change of the value of the tested parameter as a function of another variable. The results of this study can be useful in research work aimed at further development of the process of extrusion and compaction of dry ice using Drucker-Prager/Cap and modified Cam-Clay material models for instance for optimization of geometric parameters of parts and components of the main assembly of the machine used in the process of dry ice extrusion.

7.
Materials (Basel) ; 15(5)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35269020

ABSTRACT

Drive and conveyor belts are widely used in the mining and processing industry. One of the types often used is the belt with a cross-section and a diameter of several millimeters, made of weldable thermoplastic elastomer. Their production process requires the joining of the ends to obtain a closed loop. This operation is often performed by butt welding using the hot plate method. Taking into account the industrial requirements, the authors made an effort to design the automated welding machine for this type of belt. The work that had been conducted was finished with the implementation of the device for serial belt production. One of the stages of the design process of the welding machine consisted of developing a solution for the electromechanical drive system. The paper presents a design and the selection of the key components of the drive system, in particular, the electrical executive elements. Firstly, on the basis of the functional requirements of individual working mechanisms, the kinematic structure of the drives was developed, and the influence of the workload on power consumption was described. Then, using known technological parameters, experimental research of the plasticization operation was performed. On the basis of the results obtained, a mathematical model of the correlation between the plasticization force and technological parameters was derived. Using the derived model, the optimization of the technological parameters was made by using a genetic algorithm. The work led to the choice of an effective electric motor, which is the main component of the designed drive system.

8.
Materials (Basel) ; 15(4)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35208095

ABSTRACT

In the processing of waste materials, attention must be given to the efficient use of energy. The pelletization of dry ice is a good example of such processes. A literature review shows that in the pelletizers available on the market, the force applied in the process is excessive. As a result, the efficiency of the utilization of inputs, including electricity and carbon dioxide, is at a very low level. This article presents the results of experimental research on the effect of the degree of dry ice compression on the value of the Poisson ratio. The first part of this article presents the research methodology and a description of the test stand, developed specifically for this research, bearing in mind the unique properties of carbon dioxide in the solid state. The results presented show the behavior of dry ice during compression in a rectangular chamber for different final densities of the finished product. As a result, it is possible to determine the values of the Poisson ratio as a function of density, using for this purpose four mathematical models. The findings of this research may be useful for research work focused on the further development of this process, such as by using the Drucker-Prager/Cap numerical model to optimize the geometric parameters of the parts and components of the main unit of the machine used in the extrusion process of dry ice.

9.
Materials (Basel) ; 14(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34947356

ABSTRACT

The efficiency of material consumption is an important consideration for production processes; this is particularly true for processes that use waste materials. Dry ice extrusion serves as a good example. An examination of the literature on this subject leads to an observation that the commercially available machines for dry ice compression are characterized by a high value of working force. Consequently, the effectiveness of the source consumption, electric energy and carbon dioxide, is very low. The subject of the experimental research presented in the article is the influence of the density of dry ice on the value of Young's modulus. The first part of the article presents the test methodology and the special test stand that was developed to accommodate the unique characteristics of solid-state carbon dioxide. The test results present the characteristics of compaction and relaxation used as the basis for determining the value of Young's modulus. Based on the test results obtained for various material density values, the characteristics of Young's modulus are developed and graphed as a function of the density. The presented results are important for furthering the research on the development of extrusion and compaction processes; for example, using the Drucker-Prager/Cap model for the purpose of optimizing the geometrical characteristics of the work assembly components.

10.
Materials (Basel) ; 14(18)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34576628

ABSTRACT

The objective of this paper is to analyze the belt punching process with the use of a single cutting edge and discuss the influence of geometrical features of the piercing punch on the perforation force. Two basic shapes of the piercing punch with a single cutting edge were tested: tools with the blade pointing inside or pointing outside. The analytical models of the stress distribution in the shearing cross sections were derived for both punches. The presented model, along with the series of empirical tests and Coupled Eulerian-Lagrangian simulation, was used for finding the effective geometry of the piercing punch with a single cutting edge for the belt perforation. The geometrical parameters taken into consideration for the tool optimization were the following: angle of the blade, thickness of the wall and diameter of the piercing punch cutting edge. The obtained results show that changing these parameters has a significant influence on the perforation force necessary to execute the machining process and affects the quality of the holes in the perforated belts. The most important geometrical features of the hollow sharpened punch are the angle and the direction of the blade, which change the force distribution and, as a result, the mechanics of the process.

11.
Materials (Basel) ; 14(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34300742

ABSTRACT

The paper presents a comparative analysis of the circular and flat cross-section belts using measurements of a set of thermomechanical parameters, contributing to research about hot plate welding of drive belts. On the basis of thermogravimetric and spectrophotometric tests, information about the same chemical composition of the two belts was obtained. Dynamic thermomechanical analysis and scanning differential calorimetry provided information about a small difference between belts, which disappeared when the material was placed in a state of increased temperature and mechanical stress. On the basis of the analysis of the specific heat, thermal diffusion, density, and hardness, the values of the selected thermal properties of the belt were obtained, and a large similarity between the belts was identified. On the basis of the novel performed test cycle, it has been hypothesized that circular and flat belts made from thermoplastic polyurethane elastomer could be used interchangeably for butt-welding testing. It has also been proven that cyclic thermomechanical loads unify the properties of both materials so that multiple mechanical and thermal loads do not result in any change in the material properties of the two belts. As a consequence, changes in the weld properties after welding, compared to a solid belt, are not expected.

12.
Materials (Basel) ; 13(15)2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32722478

ABSTRACT

The article presents a formulated mathematical model that enables the determination of the required compressive force in the extrusion process of dry ice employing multichannel dies. This is the main parameter in the piston-based dry ice extrusion process. The indicated model was developed for the purpose of further improvement of the energy efficiency of this extrusion process. It allows for the determination of the value of compressive force by accounting for 12 variables related to the geometrical parameters of the die and the physical characteristics of dry ice. Furthermore, the paper also provides descriptions of the empirical study methodologies together with the results. These were carried out in order to determine the difference between the results of mathematical modeling and actual measurement results. The final part of the article presents the results of the analysis of the mathematical model's sensitivity to the change of the physical characteristics of dry ice. The formulated tool may be employed to adapt the geometric parameters of the die in order to obtain the desired compressive force value and dry ice granulation with reduced energy consumption.

SELECTION OF CITATIONS
SEARCH DETAIL
...