Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Int J Geriatr Psychiatry ; 39(6): e6104, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877354

ABSTRACT

The central nervous system (CNS) is widely recognized as the only organ system without lymphatic capillaries to promote the removal of interstitial metabolic by-products. Thus, the newly identified glymphatic system which provides a pseudolymphatic activity in the nervous system has been focus of latest research in neurosciences. Also, findings reported that, sleep stimulates the elimination actions of glymphatic system and is linked to normal brain homeostatis. The CNS is cleared of potentially hazardous compounds via the glymphatic system, particularly during sleep. Any age-related alterations in brain functioning and pathophysiology of various neurodegenerative illnesses indicates the disturbance of the brain's glymphatic system. In this context, ß-amyloid as well as tau leaves the CNS through the glymphatic system, it's functioning and CSF discharge markedly altered in elderly brains as per many findings. Thus, glymphatic failure may have a potential mechanism which may be therapeutically targetable in several neurodegenerative and age-associated cognitive diseases. Therefore, there is an urge to focus for more research into the connection among glymphatic system and several potential brain related diseases. Here, in our current review paper, we reviewed current research on the glymphatic system's involvement in a number of prevalent neurodegenerative and neuropsychiatric diseases and, we also discussed several therapeutic approaches, diet and life style modifications which might be used to acquire a more thorough performance and purpose of the glymphatic system to decipher novel prospects for clinical applicability for the management of these diseases.


Subject(s)
Glymphatic System , Neurodegenerative Diseases , Humans , Glymphatic System/physiopathology , Glymphatic System/physiology , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/metabolism , Brain/physiopathology , Brain/metabolism , Amyloid beta-Peptides/metabolism
2.
RSC Adv ; 14(16): 11368-11387, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38595721

ABSTRACT

A series of novel symmetrical and asymmetrical dihydropyridines (HD 1-15) were designed, subjected to in silico ADMET prediction, synthesized, analyzed by IR, NMR, Mass analytical techniques and evaluated against epidermal growth factor receptor (EGFR) as inhibitors against Breast cancer. The results of predicted ADMET studies demonstrated the drug-likeness properties of the reported compounds. The in vitro cytotoxicity assessment of the synthesized compounds revealed that all of them showed good activity (IC50 ranging from 16.75 to 66.54 µM) towards MCF-7 breast cancer cells compared to the standard drug, Lapatinib (IC50 = 2.02 µM). Among these, compounds HD-6, HD-7, and HD-8 displayed the most potent activity with IC50 value of 21.26, 16.75, and 18.33 µM, respectively. Cytotoxicity of all compounds was tested on normal vero cells for comparison at different concentrations using the MTT assay. In addition to the MTT assay, the potent dihydropyridines derivatives were screened for EGFRwt kinase inhibition assay at concentrations ranging from 1 nM to 360 nM. Among the three compounds tested, HD-8 showed reasonably good inhibition with an IC50 value of 15.90 ± 1.20 nM compared to a standard Lapatinib IC50 value of 10.28 ± 1.01 nM. Based on the molecular docking study against EGFR, the most active derivatives HD-7 and HD-8 were docked against the active site of the protein and showed better binding affinity than the standard lapatinib. Additionally, molecular dynamics (MD) simulations were performed to explore the stability of the protein-ligand complex, its dynamic behavior, and the binding affinity.

3.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36986549

ABSTRACT

Cancer is the second most life-threatening disease and has become a global health and economic problem worldwide. Due to the multifactorial nature of cancer, its pathophysiology is not completely understood so far, which makes it hard to treat. The current therapeutic strategies for cancer lack the efficacy due to the emergence of drug resistance and the toxic side effects associated with the treatment. Therefore, the search for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Propolis is a mixture of resinous compounds containing beeswax and partially digested exudates from plants leaves and buds. Its chemical composition varies widely depending on the bee species, geographic location, plant species, and weather conditions. Since ancient times, propolis has been used in many conditions and aliments for its healing properties. Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties. In recent years, extensive in vitro and in vivo studies have suggested that propolis possesses properties against several types of cancers. The present review highlights the recent progress made on the molecular targets and signaling pathways involved in the anticancer activities of propolis. Propolis exerts anticancer effects primarily by inhibiting cancer cell proliferation, inducing apoptosis through regulating various signaling pathways and arresting the tumor cell cycle, inducing autophagy, epigenetic modulations, and further inhibiting the invasion and metastasis of tumors. Propolis targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, ß-catenin, ERK1/2, MAPK, and NF-κB. Possible synergistic actions of a combination therapy of propolis with existing chemotherapies are also discussed in this review. Overall, propolis, by acting on diverse mechanisms simultaneously, can be considered to be a promising, multi-targeting, multi-pathways anticancer agent for the treatment of various types of cancers.

4.
Molecules ; 27(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35268579

ABSTRACT

Physalis angulata L. belongs to the family Solanaceae and is distributed throughout the tropical and subtropical regions. Physalis angulata leaf and fruit extracts were assessed for in vitro anticancer, antioxidant activity, and total phenolic and flavonoid content. The GC-MS technique investigated the chemical composition and structure of bioactive chemicals reported in extracts. The anticancer activity results revealed a decrease in the percentage of anticancer cells' viability in a concentration- and time-dependent way. We also noticed morphological alterations in the cells, which we believe are related to Physalis angulata extracts. Under light microscopy, we observed that as the concentration of ethanolic extract (fruit and leaves) treated HeLa cells increased, the number of cells began to decrease.


Subject(s)
Physalis
5.
Hum Exp Toxicol ; 41: 9603271211066843, 2022.
Article in English | MEDLINE | ID: mdl-35156864

ABSTRACT

Purpose: The current investigation was carried out to evaluate the efficacy of myricetin in ethanol-induced liver toxicity in Wistar rats. Research Design: Twenty-four rats were randomly divided into four groups with six animals per group. Group-I animals were administered with vehicle (distilled water), Group II, III, and IV were treated orally with sequential (per week) increase in the dose of ethanol (5, 8, 10, and 12 g/kg b wt per week in each group) for 28 days. Myricetin was treated orally to Group-III and IV animals at the respective doses of 25 mg/kg b wt. and 50 mg/kg b wt. Results: Our results showed that myricetin prevented hepatotoxicity by modulating the production of free radicals, ethanol metabolizing enzymes, and inflammatory markers in vivo. Myricetin also helped maintain lipid membrane integrity, oxidant-antioxidant status, and histoarchitecture. Ethanol administration caused elevation in XO, ADH, and CYP2E1 in hepatic tissue, which significantly normalized with myricetin administration. After ethanol administration, there was a steep increase in the hepatotoxicity biomarkers, including ALT, MDA, and AST. The level of cytotoxicity marker LDH also increased after ethanol administration; myricetin administration decreased the level of all these markers. Moreover, myricetin treatment also reduced ethanol-induced inflammatory markers such as NF-κB and IL-6. Conclusion: Findings from the current study demonstrate that myricetin administration prevents alcohol-induced hepatic injury by influencing the metabolism of ethanol, inhibiting oxidative stress, maintaining lipid profile, and suppressing inflammatory markers.


Subject(s)
Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/prevention & control , Ethanol/toxicity , Flavonoids/pharmacology , Inflammation/chemically induced , Inflammation/prevention & control , Oxidative Stress/drug effects , Animals , Disease Models, Animal , Male , Rats , Rats, Wistar
6.
Redox Rep ; 26(1): 94-104, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34018905

ABSTRACT

OBJECTIVES: The current study was designed to examine the therapeutic role of hydroalcoholic extract of Cuscuta reflexa Roxb (CRE) and Peucedanum grande C.B. Clarke (PGE) on letrozole (1 mg/kg) induced polycystic ovary syndrome (PCOS) in female Wistar albino rats. METHODS: PCOS rats were treated with CRE (280 mg/kg), PGE (140 mg/kg) or CRE + PGE p.o. for 3 weeks. Vaginal smears for phase of estrous cycle determination, serum levels of sex androgens, lipid profile, oxidative stress parameters and histopathology of ovarian tissues were investigated. RESULTS: Diestrous cycle days treated with CRE (group III) or PGE (group IV) decreased significantly (p < 0.05) compared to PCOS control animals (group II). Moreover, weight of uteri in PCOS animals treated with the plant extracts also increased significantly (p < 0.05) compared to that of group II animals. Histopathological examination showed the protective effect of the CRE and PGE indicated by the disappearance of ovarian cyst. CONCLUSION: The study demonstrated that the CRE and PGE either alone or in combination hold a significant effect in letrozole induced PCOS rat models and could be useful in the management of reproductive and metabolic disorders related to PCOS.


Subject(s)
Cuscuta , Polycystic Ovary Syndrome , Animals , Disease Models, Animal , Female , Letrozole , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Rats , Rats, Wistar
7.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670383

ABSTRACT

Epilepsy is an intricate neurological disease where the neurons are severely affected, leading to the mortality of millions worldwide. Status epilepticus (SE), induced by lithium chloride (LiCl) and pilocarpine, is the most accepted model for epilepsy. The current work aims to unravel the mechanisms underlying the anti-epileptic efficacy of zingerone (an active ingredient of ginger), which has beneficial pharmacological activities on seizure-induced behavioral, histological, neurochemical, and molecular patterns in mice. Zingerone restored cognitive function by diminishing seizure activity, escape latency, and subsequent hippocampal damage manifested in histology. Seizures are associated with local inflammation, redox imbalance, and neural loss, confirmed by the present study of SE, and was attenuated by zingerone treatment. Nuclear factor-kappa B and its downstream signaling molecules (TNF-α, IL-1ß, IL-6, NO, MPO) were activated in the LiCl-and-pilocarpine-induced group leading to inflammatory signaling, which was substantially ameliorated by zingerone treatment. The intrinsic apoptotic process was triggered subsequent to SE, as demonstrated by augmentation of cleaved caspase-3, downregulation of Bcl-2. However, zingerone treatment downregulated caspase-3 and upregulated Bcl-2, increasing cell survival and decreasing hippocampal neural death, deciphering involvement of apoptosis in SE. Therefore, zingerone plays an essential role in neuroprotection, probably by precluding oxidative stress, inflammation, and obstructing the mitochondrial pathway of apoptosis.

8.
Plants (Basel) ; 9(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339267

ABSTRACT

Extensive research has been carried out during the last few decades, providing a detailed account of thousands of discovered phytochemicals and their biological activities that have the potential to be exploited for a wide variety of medicinal purposes. These phytochemicals, which are pharmacologically important for clinical use, primarily consist of polyphenols, followed by terpenoids and alkaloids. There are numerous published reports indicating the primary role of phytochemicals proven to possess therapeutic potential against several diseases. However, not all phytochemicals possess significant medicinal properties, and only some of them exhibit viable biological effects. Naringenin, a flavanone found in citrus fruits, is known to improve immunity, repair DNA damage, and scavenge free radicals. Despite the very low bioavailability of naringenin, it is known to exhibit various promising biological properties of medicinal importance, including anti-inflammatory and antioxidant activities. This review focuses on the various aspects related to naringenin, particularly its physicochemical, pharmacokinetic, and pharmacodynamic properties. Furthermore, various pharmacological activities of naringenin, such as anticancer, antidiabetic, hepatoprotective, neuroprotective, cardioprotective, nephroprotective, and gastroprotective effects, have been discussed along with their mechanisms of action.

9.
Molecules ; 25(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371296

ABSTRACT

Systemic inflammation results in physiological changes, largely mediated by inflammatory cytokines. The present investigation was performed to determine the effect of Rhododendron arboreum (RAP) on inflammatory parameters in the animal model. The RAP (100 and 200 mg/kg) were pre-treated for animals, given orally for one week, followed by lipopolysaccharide (LPS) injection. Body temperature, burrowing, and open field behavioral changes were assessed. Biochemical parameters (AST, ALT, LDH, BIL, CK, Cr, BUN, and albumin) were done in the plasma after 6 h of LPS challenge. Oxidative stress markers SOD, CAT, and MDA were measured in different organs. Levels of inflammatory markers like tumor necrosis factor-alpha (TNF-α), interleukin-1-beta (IL-1ß) and, interleukin-6 (IL-6) as well as VEGF, a specific sepsis marker in plasma, were quantified. The plasma enzymes, antioxidant markers and plasma pro-inflammatory cytokines were significantly restored (p < 0.5) by RAP treatment, thus preventing the multi-organ and tissue damage in LPS induced rats. The protective effect of RAP may be due to its potent antioxidant potential. Thus, RAP can prevent LPS induced oxidative stress, as well as inflammatory and multi-organ damage as reported in histopathological studies in rats when administered to the LPS treated animals. These findings indicate that RAP can benefit in the management of systemic inflammation from LPS and may have implications for a new treatment or preventive therapeutic strategies with an inflammatory component.


Subject(s)
Inflammation/chemically induced , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Oxidative Stress/drug effects , Polysaccharides/pharmacology , Rhododendron/chemistry , Animals , Antioxidants/metabolism , Biomarkers/blood , Cytokines/blood , Cytokines/metabolism , Disease Models, Animal , Inflammation/blood , Inflammation/metabolism , Male , Rats , Rats, Wistar
10.
Molecules ; 25(21)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158114

ABSTRACT

The present investigation aimed to evaluate the protective effect of Zingerone (ZIN) against lipopolysaccharide-induced oxidative stress, DNA damage, and cytokine storm in rats. For survival study the rats were divided into four groups (n = 10). The control group was treated with normal saline; Group II received an intraperitoneal (i.p) injection (10 mg/kg) of LPS as disease control. Rats in Group III were treated with ZIN 150 mg/kg (p.o) 2 h before LPS challenge and rats in Group IV were given ZIN only. Survival of the rats was monitored up to 96 h post LPS treatment. In another set, the animals were divided into four groups of six rats. Animals in Group I served as normal control and were treated with normal saline. Animals in Group II were treated with lipopolysaccharide (LPS) and served as disease control. Group III animals were treated with ZIN 2 h before LPS challenge. Group IV served as positive control and were treated with ZIN (150 mg/kg orally). The blood samples were collected and used for the analysis of biochemical parameters like alanine transaminase (ALT), alkaline phosphatase (ALP), aspartate transaminase (AST), blood urea nitrogen (BUN), Cr, Urea, lactate dehydrogenase (LDH), albumin, bilirubin (BIL), and total protein. Oxidative stress markers malondialdehyde (MDA), glutathione peroxidase (GSH), myeloperoxidase (MPO), and (DNA damage marker) 8-OHdG levels were measured in different organs. Level of nitric oxide (NO) and inflammatory markers like TNF-α, IL-1ß, IL-1α, IL-2, IL-6, and IL-10 were also quantified in plasma. Procalcitonin (PCT), a sepsis biomarker, was also measured. ZIN treatment had shown significant (p < 0.5) restoration of plasma enzymes, antioxidant markers and attenuated plasma proinflammatory cytokines and sepsis biomarker (PCT), thereby preventing the multi-organ and tissue damage in LPS-induced rats also confirmed by histopathological studies of different organs. The protective effect of ZIN may be due to its potent antioxidant potential. Thus ZIN can prevent LPS-induced oxidative stress as well as inflammatory and multi-organ damage in rats when administered to the LPS treated animals.


Subject(s)
Cytokines/blood , Guaiacol/analogs & derivatives , Lipopolysaccharides/toxicity , Multiple Organ Failure , Nitric Oxide/blood , Oxidative Stress/drug effects , Sepsis , Animals , Biomarkers/blood , Guaiacol/pharmacology , Inflammation/blood , Inflammation/chemically induced , Inflammation/prevention & control , Male , Multiple Organ Failure/blood , Multiple Organ Failure/chemically induced , Multiple Organ Failure/prevention & control , Rats , Rats, Wistar , Sepsis/blood , Sepsis/chemically induced , Sepsis/prevention & control
11.
Molecules ; 25(17)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846866

ABSTRACT

In the present investigation, the ultrasound-assisted extraction (UAE) conditions and optimization of Rhododendron arboreum polysaccharide (RAP) yield were studied by a Box-Behnken response surface design and the evaluation of its antioxidant potential. Three parameters that affect the productivity of UAE, such as extraction temperature (50-90 °C), extraction time (10-30 min), and solid-liquid ratio (1-2 g/mL), were examined to optimize the yield of the polysaccharide percentage. The chromatographic analysis revealed that the composition of monosaccharides was found to be glucose, galactose, mannose, arabinose, and fucose. The data were fitted to polynomial response models, applying multiple regression analysis with a high coefficient of determination value (R2 = 0.999). The data exhibited that the extraction parameters have significant effects on the extraction yield of polysaccharide percentage. Derringer's desirability prediction tool was attained under the optimal extraction conditions (extraction temperature 66.75 °C, extraction time 19.72 min, and liquid-solid ratio 1.66 mL/g) with a desirability value of 1 yielded the highest polysaccharide percentage (11.56%), which was confirmed through validation experiments. An average of 11.09 ± 1.65% of polysaccharide yield was obtained in optimized extraction conditions with a 95.43% validity. The in vitro antioxidant effect of polysaccharides of R. arboreum was studied. The results showed that the RAP extract exhibited a strong potential against free radical damage.


Subject(s)
Free Radical Scavengers , Polysaccharides , Rhododendron/chemistry , Chemical Fractionation , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification
12.
Plants (Basel) ; 9(4)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344607

ABSTRACT

Doxorubicin (Dox) is an operational and largely used anticancer drug, used to treat an array of malignancies. Nonetheless, its beneficial use is constrained due to its renal and hepatotoxicity dose dependently. Numerous research findings favor the use of antioxidants may impact Dox-induced liver injury/damage. In the current study, Wistar rats were given naringenin (50 and 100 mg/kg b.wt.) orally for 20 days as prophylactic dose, against the hepatotoxicity induced by single intraperitoneal injection of Dox (20 mg/kg b.wt.). Potency of naringenin against the liver damage caused by Dox was assessed by measuring malonyl aldehyde (MDA) as a by-product of lipid peroxidation, biochemical estimation of antioxidant enzyme system, reactive oxygen species (ROS) level, and inflammatory mediators. Naringenin-attenuated ROS production, ROS-induced lipid peroxidation, and replenished reduced antioxidant armory, namely, catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH). Naringenin similarly diminished expression of Cox-2 and levels of NF-κB and other inflammatory molecules induced by the Dox treatment. Histology added further evidence to the defensive effects of naringenin on Dox-induced liver damage. The outcomes of the current study reveal that oxidative stress and inflammation are meticulously linked with Dox-triggered damage, and naringenin illustrates the potential effect on Dox-induced hepatotoxicity probably through diminishing the oxidative stress and inflammation.

13.
Plants (Basel) ; 9(2)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019201

ABSTRACT

The purpose of this study is to analyze the polyphenolic rich extract of Crocus sativus L. petals (CSP) in modulating liver oxidative stress and inflammatory response status against rifampicin isoniazid (INH-RIF) drug-induced liver injury. The INH-RIF was administered for 14 days with varying doses in Wistar rats, while silymarin was administered as standard dose. We report the defensive impacts of CSP against INH-RIF induced liver oxidative stress and proinflammatory cytokine. The CSP treatment at both doses significantly controlled all modulating biochemical hepatic injury indicators and resulted in the attenuation of arbitral INH-RIF damage. The components present in CSP identified by LC-ESI-Q-TOF-MS were found to be flavonoids and fatty acids. It can be inferred that CSP possesses a hepatoprotective capacity against INH-RIF-mediated hepatic injury, which may prove to be a medically beneficial natural product for the management of drug-induced liver injury.

14.
Saudi Pharm J ; 27(6): 767-777, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31516319

ABSTRACT

Marine natural products have as of now been acknowledged as the most important source of bioactive substances and drug leads. Marine flora and fauna, such as algae, bacteria, sponges, fungi, seaweeds, corals, diatoms, ascidian etc. are important resources from oceans, accounting for more than 90% of the total oceanic biomass. They are taxonomically different with huge productive and are pharmacologically active novel chemical signatures and bid a tremendous opportunity for discovery of new anti-cancer molecules. The water bodies a rich source of potent molecules which improve existence suitability and serve as chemical shield against microbes and little or huge creatures. These molecules have exhibited a range of biological properties antioxidant, antibacterial, antitumour etc. In spite of huge resources enriched with exciting chemicals, the marine floras and faunas are largely unexplored for their anticancer properties. In recent past, numerous marine anticancer compounds have been isolated, characterized, identified and are under trials for human use. In this write up we have tried to compile about marine-derived compounds anticancer biological activities of diverse flora and fauna and their underlying mechanisms and the generous raise in these compounds examined for malignant growth treatment in the course of the most recent quite a long while.

15.
Curr Neuropharmacol ; 17(3): 247-267, 2019.
Article in English | MEDLINE | ID: mdl-30207234

ABSTRACT

Nature has bestowed mankind with surplus resources (natural products) on land and water. Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. These natural products have been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and anti-apoptotic activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in herbs, fruits, nuts, vegetables and also in marine and freshwater flora. These phytoconstituents may potentially suppress neurodegeneration and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in the prevention and cure of different neurodegenerative diseases, such as Alzheimer's disease, epilepsy, Parkinson's disease and other neuronal disorders. The large-scale neuro-pharmacological activities of natural products have been documented due to the result of either the inhibition of inflammatory processes, or the up-regulation of various cell survival proteins or a combination of both. Due to the scarcity of human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural products in in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications using the available knowledge in the literature.


Subject(s)
Biological Products/therapeutic use , Nervous System Diseases/drug therapy , Neuroprotective Agents/therapeutic use , Animals , Biological Products/chemistry , Humans , Neuroprotective Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...